summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--library/topology/topological-space.tex77
1 files changed, 64 insertions, 13 deletions
diff --git a/library/topology/topological-space.tex b/library/topology/topological-space.tex
index 2c6b98c..7ff588d 100644
--- a/library/topology/topological-space.tex
+++ b/library/topology/topological-space.tex
@@ -380,13 +380,19 @@
Therefore $a \in \carrier[X] \setminus (\unions{F'})$.
\end{subproof}
+
+
+
We show that for all $a \in \carrier[X] \setminus (\unions{F'})$ we have $a \in \inters{F}$.
\begin{subproof}
- Fix $a \in \carrier[X] \setminus (\unions{F'})$.
\begin{byCase}
- \caseOf{$a = \emptyset$.}
- Omitted.
- \caseOf{$a \neq \emptyset$.}
+ \caseOf{$\inters{F} = \emptyset$.}
+ $F$ is inhabited.
+ Take $U$ such that $U \in F$.
+ Let $F'' = F \setminus \{U\}$.
+ There exist $U' \in F'$ such that $U' = \carrier[X] \setminus U$.
+ \caseOf{$\inters{F} \neq \emptyset$.}
+ Fix $a \in \carrier[X] \setminus (\unions{F'})$.
$a \in \carrier[X]$.
$a \notin \unions{F'}$.
For all $A \in F'$ we have $a \notin A$.
@@ -408,6 +414,30 @@
Suppose $A \subseteq \carrier[X]$.
Then $\closure{A}{X}$ is closed in $X$.
\end{proposition}
+\begin{proof}
+ \begin{byCase}
+ \caseOf{$\closure{A}{X} = \emptyset$.}
+ Trivial.
+ \caseOf{$\closure{A}{X} \neq \emptyset$.}
+ $\closures{A}{X}$ is inhabited.
+ $\closures{A}{X} \subseteq \pow{\carrier[X]}$.
+ For all $B \in \closures{A}{X}$ we have $B$ is closed in $X$.
+ $\inters{\closures{A}{X}}$ is closed in $X$.
+ \end{byCase}
+\end{proof}
+
+\begin{definition}\label{set_of_closeds}
+ $\closeds[X] = \{ Y \in \pow{\carrier[X]} \mid \text{$Y$ is closed in $X$}\}$.
+\end{definition}
+
+\begin{proposition}\label{closure_is_minimal_closed_set}
+ Let $X$ be a topological space.
+ Suppose $A \subseteq \carrier[X]$.
+ For all $Y \in \closeds[X]$ such that $A \subseteq Y$ we have $\closure{A}{X} \subseteq Y$.
+\end{proposition}
+\begin{proof}
+ Follows by \cref{closure,set_of_closeds,inters_subseteq_elem,closures}.
+\end{proof}
\begin{proposition}\label{complement_interior_eq_closure_complement}
Let $X$ be a topological space.
@@ -432,24 +462,45 @@
\end{proof}
+
\begin{definition}[Frontier]\label{frontier}
$\frontier{A}{X} = \closure{A}{X}\setminus\interior{A}{X}$.
\end{definition}
-\begin{proposition}\label{safe} %TODO: Remove!!!
- $x \neq x$.
+\begin{proposition}\label{closure_interior_frontier_is_in_carrier}
+ Let $X$ be a topological space.
+ Suppose $A \subseteq \carrier[X]$.
+ Then $\closure{A}{X}, \interior{A}{X}, \frontier{A}{X} \subseteq \carrier[X]$.
+\end{proposition}
+
+\begin{proposition}\label{frontier_is_closed}
+ Let $X$ be a topological space.
+ Suppose $A \subseteq \carrier[X]$.
+ Then $\frontier{A}{X}$ is closed in $X$.
+\end{proposition}
+\begin{proof}
+ $\closure{A}{X}\setminus\interior{A}{X}$ is closed in $X$ by \cref{closure_interior_frontier_is_in_carrier,closure_is_closed,interior_is_open,closed_minus_open_is_closed}.
+\end{proof}
+
+\begin{proposition}\label{setdifference_eq_intersection_with_complement}
+ Suppose $A,B \subseteq C$.
+ Then $A \setminus B = A \inter (C \setminus B)$.
\end{proposition}
-\begin{proposition}%[Frontier as intersection of closures]
-\label{frontier_as_inter}
+
+
+\begin{proposition}\label{frontier_as_inter}
+ Let $X$ be a topological space.
+ Suppose $A \subseteq \carrier[X]$.
$\frontier{A}{X} = \closure{A}{X} \inter \closure{(\carrier[X]\setminus A)}{X}$.
\end{proposition}
\begin{proof}
- % TODO
- %Omitted.
- %$\frontier{A}{X} = \closure{A}{X}\setminus\interior{A}{X}$. % by frontier (definition)
- %$\closure{A}{X}\setminus\interior{A}{X} = \closure{A}{X}\inter(\carrier[X]\setminus\interior{A}{X})$. % by setminus_eq_inter_complement
- %$\closure{A}{X}\inter(\carrier[X]\setminus\interior{A}{X}) = \closure{A}{X} \inter \closure{(\carrier[X]\setminus A)}{X}$. % by complement_interior_eq_closure_complement
+ \begin{align*}
+ \frontier{A}{X} \\
+ &= \closure{A}{X}\setminus\interior{A}{X} \\
+ &= \closure{A}{X} \inter (\carrier[X] \setminus \interior{A}{X}) \explanation{by \cref{setdifference_eq_intersection_with_complement,closure_interior_frontier_is_in_carrier}}\\
+ &= \closure{A}{X} \inter \closure{(\carrier[X]\setminus A)}{X} \explanation{by \cref{complement_interior_eq_closure_complement}}
+ \end{align*}
\end{proof}
\begin{proposition}\label{frontier_of_emptyset}