summaryrefslogtreecommitdiff
path: root/library/numbers.tex
diff options
context:
space:
mode:
Diffstat (limited to 'library/numbers.tex')
-rw-r--r--library/numbers.tex66
1 files changed, 34 insertions, 32 deletions
diff --git a/library/numbers.tex b/library/numbers.tex
index 08cbc70..4ccba67 100644
--- a/library/numbers.tex
+++ b/library/numbers.tex
@@ -431,7 +431,14 @@ Such that we can introduce the integers and raitionals as smooth as possible.
For all $x,y,z \in \reals$ if $x + y = x + z$ then $y = z$.
\end{axiom}
+\begin{axiom}\label{zero_less_one}
+ $\zero < 1$.
+\end{axiom}
+\begin{axiom}\label{reals_axiom_order_def}
+ Suppose $x,y,z,w \in \reals$.
+ If $x + y < z + w$ then $x < z \lor y < w$.
+\end{axiom}
@@ -501,42 +508,37 @@ Such that we can introduce the integers and raitionals as smooth as possible.
\subsection{The Rationals}
-%\begin{definition}
-% $\inv{x}
-%\end{definition}
-%
-%\begin{axiom}
-% For all $x,y \in \reals$ we have $\rfrac{x}{y} \in \reals$.
-%\end{axiom}
-%
-%\begin{definition}
-% $\rationals = \{ q \in \reals \mid \exists z \in \integers. \exists n \in \integers. q = \rfrac{z}{n} \}$.
-%\end{definition}
-
-
-
-
+\begin{axiom}\label{invers_reals}
+ For all $q \in \reals$ we have $\inv{q} \rmul q = 1$.
+\end{axiom}
+\begin{abbreviation}\label{rfrac}
+ $\rfrac{x}{y} = x \rmul \inv{y}$.
+\end{abbreviation}
+\begin{abbreviation}\label{naturalsplus}
+ $\naturalsPlus = \naturals \setminus \{\zero\}$.
+\end{abbreviation}
+\begin{definition}\label{rationals}
+ $\rationals = \{ q \in \reals \mid \exists z \in \integers. \exists n \in \naturalsPlus. q = \rfrac{z}{n} \}$.
+\end{definition}
-%\begin{signature}\label{invers_is_set}
-% $\addInv{y}$ is a set.
-%\end{signature}
-%\begin{definition}\label{add_inverse}
-% $\addInv{y} = \{ x \mid \exists k \in \reals. k + y = \zero \land x \in k\}$.
-%\end{definition}
-
+\subsection{Order on the reals}
-%\begin{definition}\label{add_inverse_natural_language}
-% $x$ is additiv inverse of $y$ iff $x = \addInv{y}$.
-%\end{definition}
+\begin{lemma}\label{plus_one_order}
+ For all $r\in \reals$ we have $ r < r + 1$.
+\end{lemma}
+\begin{proof}
+ %Follows by \cref{reals_axiom_one,reals_axiom_order,reals_axiom_order_def,zero_less_one,reals}.
+\end{proof}
-%\begin{lemma}\label{rminus}
-% $x \rminus \addInv{x} = \zero$.
-%\end{lemma}
+\begin{lemma}\label{negation_and_order}
+ Suppose $r \in \reals$.
+ $r \leq \zero$ iff $\zero \leq \neg{r}$.
+\end{lemma}
@@ -546,7 +548,7 @@ Such that we can introduce the integers and raitionals as smooth as possible.
Then $x + y$ is positiv.
\end{lemma}
\begin{proof}
- Omitted.
+
\end{proof}
\begin{lemma}\label{reals_mul_of_positiv}
@@ -688,6 +690,6 @@ Such that we can introduce the integers and raitionals as smooth as possible.
-\begin{proposition}\label{safe}
- Contradiction.
-\end{proposition}
+%\begin{proposition}\label{safe}
+% Contradiction.
+%\end{proposition}