diff options
Diffstat (limited to 'library/numbers.tex')
| -rw-r--r-- | library/numbers.tex | 790 |
1 files changed, 719 insertions, 71 deletions
diff --git a/library/numbers.tex b/library/numbers.tex index 5dd06da..d3af3f1 100644 --- a/library/numbers.tex +++ b/library/numbers.tex @@ -1,16 +1,10 @@ -\import{nat.tex} \import{order/order.tex} \import{relation.tex} +\import{set/suc.tex} +\import{ordinal.tex} -\section{The real numbers} -%TODO: Implementing Notion for negativ number such as -x. - -%TODO: -%\inv{} für inverse benutzen. Per Signatur einfüheren und dann axiomatisch absicher -%\cdot für multiklikation verwenden. -%< für die relation benutzen. -% sup und inf einfügen +\section{The numbers}\label{form_sec_numbers} \begin{signature} $\reals$ is a set. @@ -21,140 +15,719 @@ \end{signature} \begin{signature} - $x \times y$ is a set. + $x \rmul y$ is a set. \end{signature} + + +\subsection{Creation of natural numbers} + +\subsubsection{Defenition and axioms} + +\begin{abbreviation}\label{inductive_set} + $A$ is an inductive set iff $\emptyset\in A$ and for all $a\in A$ we have $\suc{a}\in A$. +\end{abbreviation} + +\begin{abbreviation}\label{zero_is_emptyset} + $\zero = \emptyset$. +\end{abbreviation} + +\begin{axiom}\label{reals_axiom_zero_in_reals} + $\zero \in \reals$. +\end{axiom} + \begin{axiom}\label{one_in_reals} $1 \in \reals$. \end{axiom} -\begin{axiom}\label{reals_axiom_order} - $\lt[\reals]$ is an order on $\reals$. +\begin{axiom}\label{zero_neq_one} + $\zero \neq 1$. \end{axiom} -\begin{axiom}\label{reals_axiom_strictorder} - $\lt[\reals]$ is a strict order. +\begin{axiom}\label{one_is_suc_zero} + $\suc{\zero} = 1$. \end{axiom} -\begin{abbreviation}\label{less_on_reals} - $x < y$ iff $(x,y) \in \lt[\reals]$. -\end{abbreviation} +\begin{axiom}\label{naturals_subseteq_reals} + $\naturals \subseteq \reals$. +\end{axiom} -\begin{abbreviation}\label{greater_on_reals} - $x > y$ iff $y < x$. -\end{abbreviation} +\begin{axiom}\label{naturals_inductive_set} + $\naturals$ is an inductive set. +\end{axiom} -\begin{abbreviation}\label{lesseq_on_reals} - $x \leq y$ iff it is wrong that $x > y$. -\end{abbreviation} +\begin{axiom}\label{naturals_smallest_inductive_set} + Let $A$ be an inductive set. + Then $\naturals\subseteq A$. +\end{axiom} -\begin{abbreviation}\label{greatereq_on_reals} - $x \geq y$ iff it is wrong that $x < y$. +\begin{abbreviation}\label{is_a_natural_number} + $n$ is a natural number iff $n \in \naturals$. \end{abbreviation} -\begin{axiom}\label{reals_axiom_dense} - For all $x,y \in \reals$ if $x < y$ then - there exist $z \in \reals$ such that $x < z$ and $z < y$. +\begin{axiom}\label{naturals_addition_axiom_1} + For all $n \in \naturals$ $n + \zero = \zero + n = n$. \end{axiom} -\begin{axiom}\label{reals_axiom_order_def} - $x < y$ iff there exist $z \in \reals$ such that $\zero < z$ and $x + z = y$. +\begin{axiom}\label{naturals_addition_axiom_2} + For all $n, m \in \naturals$ $n + \suc{m} = \suc{n} + m = \suc{n+m}$. \end{axiom} -\begin{lemma}\label{reals_one_bigger_than_zero} - $\zero < 1$. +\begin{axiom}\label{naturals_mul_axiom_1} + For all $n \in \naturals$ we have $n \rmul \zero = \zero = \zero \rmul n$. +\end{axiom} + +\begin{axiom}\label{naturals_mul_axiom_2} + For all $n,m \in \naturals$ we have $\suc{n} \rmul m = (n \rmul m) + m$. +\end{axiom} + +\begin{axiom}\label{addition_on_naturals} + If $x$ is a natural number and $y$ is a natural number then $x+y$ is a natural number. +\end{axiom} + +\begin{axiom}\label{naturals_rmul_is_closed_in_n} + For all $n,m \in \naturals$ we have $(n \rmul m) \in \naturals$. +\end{axiom} + +\begin{axiom}\label{naturals_add_is_closed_in_n} + For all $n,m \in \naturals$ we have $(n + m) \in \naturals$. +\end{axiom} + +\subsubsection{Natural numbers as ordinals} + + +\begin{lemma}\label{nat_is_successor_ordinal} + Let $n\in\naturals$. + Suppose $n\neq \emptyset$. + Then $n$ is a successor ordinal. +\end{lemma} +\begin{proof} + Let $M = \{ m\in \naturals \mid\text{$m = \emptyset$ or $m$ is a successor ordinal}\}$. + $M$ is an inductive set by \cref{suc_ordinal,naturals_inductive_set,successor_ordinal,emptyset_is_ordinal}. + Now $M\subseteq \naturals\subseteq M$ + by \cref{subseteq,naturals_smallest_inductive_set}. + Thus $M = \naturals$. + Follows by \cref{subseteq}. +\end{proof} + +\begin{lemma}\label{nat_is_transitiveset} + $\naturals$ is \in-transitive. +\end{lemma} +\begin{proof} + Let $M = \{ m\in\naturals \mid \text{for all $n\in m$ we have $n\in\naturals$} \}$. + $\emptyset\in M$. + For all $n\in M$ we have $\suc{n}\in M$ + by \cref{naturals_inductive_set,suc}. + Thus $M$ is an inductive set. + Now $M\subseteq \naturals\subseteq M$ + by \cref{subseteq,naturals_smallest_inductive_set}. + Hence $\naturals = M$. +\end{proof} + +\begin{lemma}\label{natural_number_is_ordinal} + Every natural number is an ordinal. \end{lemma} +\begin{proof} + Follows by \cref{suc_ordinal,suc_neq_emptyset,naturals_inductive_set,nat_is_successor_ordinal,successor_ordinal,suc_ordinal_implies_ordinal}. +\end{proof} +\begin{lemma}\label{omega_is_an_ordinal} + $\naturals$ is an ordinal. +\end{lemma} +\begin{proof} + Follows by \cref{natural_number_is_ordinal,transitive_set_of_ordinals_is_ordinal,nat_is_transitiveset}. +\end{proof} -\begin{axiom}\label{reals_axiom_assoc} - For all $x,y,z \in \reals$ $(x + y) + z = x + (y + z)$ and $(x \times y) \times z = x \times (y \times z)$. +\begin{lemma}\label{omega_is_a_limit_ordinal} + $\naturals$ is a limit ordinal. +\end{lemma} +\begin{proof} + $\emptyset\precedes \naturals$. + If $n\in \naturals$, then $\suc{n}\in\naturals$. +\end{proof} + + +\subsubsection{Properties and Facts natural numbers} + +\begin{theorem}\label{induction_principle} + Let $P$ be a set. + Suppose $P \subseteq \naturals$. + Suppose $\zero \in P$. + Suppose $\forall n \in P. \suc{n} \in P$. + Then $P = \naturals$. +\end{theorem} +\begin{proof} + Trivial. +\end{proof} + +\begin{proposition}\label{existence_of_suc} + Let $n \in \naturals$. + Suppose $n \neq \zero$. + Then there exist $n' \in \naturals$ such that $\suc{n'} = n$. +\end{proposition} +\begin{proof} + Follows by \cref{transitiveset,nat_is_transitiveset,suc_intro_self,successor_ordinal,nat_is_successor_ordinal}. +\end{proof} + +\begin{proposition}\label{suc_eq_plus_one} + Let $n \in \naturals$. + Then $\suc{n} = n + 1$. +\end{proposition} +\begin{proof} + Let $P = \{ n \in \naturals \mid n + 1 = 1 + n \}$. + $\zero \in P$. + It suffices to show that if $m \in P$ then $\suc{m} \in P$. +\end{proof} + +\begin{proposition}\label{naturals_1_kommu} + Let $n \in \naturals$. + Then $1 + n = n + 1$. +\end{proposition} +\begin{proof} + Follows by \cref{suc_eq_plus_one,naturals_addition_axiom_2,naturals_addition_axiom_1,naturals_inductive_set,one_is_suc_zero}. +\end{proof} + +\begin{proposition}\label{naturals_add_kommu} + For all $n \in \naturals$ we have for all $m\in \naturals$ we have $n + m = m + n$. +\end{proposition} +\begin{proof} + Fix $n \in \naturals$. + Let $P = \{ m \in \naturals \mid m + n = n + m \}$. + It suffices to show that $P = \naturals$. + $P \subseteq \naturals$. + $\zero \in P$. + It suffices to show that if $m \in P$ then $\suc{m} \in P$. +\end{proof} + +\begin{proposition}\label{naturals_add_assoc} + Suppose $n,m,k \in \naturals$. + Then $n + (m + k) = (n + m) + k$. +\end{proposition} +\begin{proof} + Let $P = \{ k \in \naturals \mid \text{for all $n',m' \in \naturals$ we have $n' + (m' + k) = (n' + m') + k$}\}$. + $P \subseteq \naturals$. + $\zero \in P$. + It suffices to show that for all $k \in P$ we have $\suc{k} \in P$. + Fix $k \in P$. + It suffices to show that for all $n' \in \naturals$ we have for all $m' \in \naturals$ we have $n' + (m' + \suc{k}) = (n' + m') + \suc{k}$. + Fix $n' \in \naturals$. + Fix $m' \in \naturals$. + \begin{align*} + (n' + m') + \suc{k} \\ + &= \suc{(n' + m') + k} \\ + &= \suc{n' + (m' + k)} \\ + &= n' + \suc{(m' + k)} \\ + &= n' + (m' + \suc{k}) + \end{align*} +\end{proof} + +\begin{proposition}\label{naturals_rmul_one_left} + For all $n \in \naturals$ we have $1 \rmul n = n$. +\end{proposition} +\begin{proof} + Fix $n \in \naturals$. + \begin{align*} + 1 \rmul n \\ + &= \suc{\zero} \rmul n \\ + &= (\zero \rmul n) + n \\ + &= (\zero) + n \\ + &= n + \end{align*} +\end{proof} + +\begin{proposition}\label{naturals_add_remove_brakets} + Suppose $n,m,k \in \naturals$. + Then $(n + m) + k = n + m + k = n + (m + k)$. +\end{proposition} + +\begin{proposition}\label{naturals_add_remove_brakets2} + Suppose $n,m,k,l \in \naturals$. + Then $(n + m) + (k + l)= n + m + k + l = n + (m + k) + l = (((n + m) + k) + l)$. +\end{proposition} + +%\begin{proposition}\label{natural_disstro_oneline} +% Suppose $n,m,k \in \naturals$. +% Then $n \rmul (m + k) = (n \rmul m) + (n \rmul k)$. +%\end{proposition} +%\begin{proof} +% Let $P = \{n \in \naturals \mid \forall m,k \in \naturals . n \rmul (m + k) = (n \rmul m) + (n \rmul k)\}$. +% $\zero \in P$. +% $P \subseteq \naturals$. +% It suffices to show that for all $n \in P$ we have $\suc{n} \in P$. +% Fix $n \in P$. +% It suffices to show that for all $m'$ such that $m' \in \naturals$ we have for all $k' \in \naturals$ we have $\suc{n} \rmul (m' + k') = (\suc{n} \rmul m') + (\suc{n} \rmul k')$. +% Fix $m' \in \naturals$. +% Fix $k' \in \naturals$. +% $n \in \naturals$. +% $ \suc{n} \rmul (m' + k') = (n \rmul (m' + k')) + (m' + k') = ((n \rmul m') + (n \rmul k')) + (m' + k') = ((n \rmul m') + (n \rmul k')) + m' + k' = (((n \rmul m') + (n \rmul k')) + m') + k' = (m' + ((n \rmul m') + (n \rmul k'))) + k' = ((m' + (n \rmul m')) + (n \rmul k')) + k' = (((n \rmul m') + m') + (n \rmul k')) + k' = ((n \rmul m') + m') + ((n \rmul k') + k') = (\suc{n} \rmul m') + (\suc{n} \rmul k')$. +%\end{proof} + +\begin{proposition}\label{natural_disstro} + Suppose $n,m,k \in \naturals$. + Then $n \rmul (m + k) = (n \rmul m) + (n \rmul k)$. +\end{proposition} +\begin{proof} + %Let $P = \{n \in \naturals \mid \forall m,k \in \naturals . n \rmul (m + k) = (n \rmul m) + (n \rmul k)\}$. + Let $P = \{n \in \naturals \mid \text{for all $m,k \in \naturals$ we have $n \rmul (m + k) = (n \rmul m) + (n \rmul k)$}\}$. + + $\zero \in P$. + $P \subseteq \naturals$. + It suffices to show that for all $n \in P$ we have $\suc{n} \in P$. + Fix $n \in P$. + + It suffices to show that for all $m'$ such that $m' \in \naturals$ we have for all $k' \in \naturals$ we have $\suc{n} \rmul (m' + k') = (\suc{n} \rmul m') + (\suc{n} \rmul k')$. + Fix $m' \in \naturals$. + Fix $k' \in \naturals$. + $n \in \naturals$. + \begin{align*} + \suc{n} \rmul (m' + k') \\ + &= (n \rmul (m' + k')) + (m' + k') \\% \explanation{by \cref{naturals_mul_axiom_2}}\\ + &= ((n \rmul m') + (n \rmul k')) + (m' + k') \\%\explanation{by assumption}\\ + &= ((n \rmul m') + (n \rmul k')) + m' + k' \\%\explanation{by \cref{naturals_add_remove_brakets,naturals_add_kommu}}\\ + &= (((n \rmul m') + (n \rmul k')) + m') + k' \\%\explanation{by \cref{naturals_add_kommu,naturals_add_remove_brakets,naturals_add_assoc}}\\ + &= (m' + ((n \rmul m') + (n \rmul k'))) + k' \\%\explanation{by \cref{naturals_add_kommu}}\\ + &= ((m' + (n \rmul m')) + (n \rmul k')) + k' \\%\explanation{by \cref{naturals_add_assoc}}\\ + &= (((n \rmul m') + m') + (n \rmul k')) + k' \\%\explanation{by \cref{naturals_add_kommu}}\\ + &= ((n \rmul m') + m') + ((n \rmul k') + k') \\%\explanation{by \cref{naturals_add_assoc}}\\ + &= (\suc{n} \rmul m') + (\suc{n} \rmul k') %\explanation{by \cref{naturals_mul_axiom_2}} + \end{align*} +\end{proof} + +\begin{proposition}\label{naturals_rmul_one_kommu} + For all $n \in \naturals$ we have $n \rmul 1 = n$. +\end{proposition} +\begin{proof} + Let $P = \{ n \in \naturals \mid n \rmul 1 = n\}$. + $1 \in P$. + It suffices to show that for all $n' \in P$ we have $\suc{n'} \in P$. + Fix $n' \in P$. + It suffices to show that $\suc{n'} \rmul 1 = \suc{n'}$. + \begin{align*} + \suc{n'} \rmul 1 \\ + &= n' \rmul 1 + 1 \\ + &= n' + 1 \\ + &= \suc{n'} + \end{align*} +\end{proof} + +\begin{proposition}\label{naturals_rmul_kommu} + Let $n, m \in \naturals$. + Then $n \rmul m = m \rmul n$. +\end{proposition} +\begin{proof} + Let $P = \{n \in \naturals \mid \forall m \in \naturals. n \rmul m = m \rmul n\}$. + $\zero \in P$. + $P \subseteq \naturals$. + It suffices to show that for all $n \in P$ we have $\suc{n} \in P$. + Fix $n \in P$. + It suffices to show that for all $m \in \naturals$ we have $\suc{n} \rmul m = m \rmul \suc{n}$. + Fix $m \in \naturals$. + $n \rmul m = m \rmul n$. + \begin{align*} + \suc{n} \rmul m \\ + &= (n \rmul m) + m \\ + &= (m \rmul n) + m \\ + &= m + (m \rmul n) \\ + &= (m \rmul 1) + (m \rmul n) \\ + &= m \rmul (1 + n) \\ + &= m \rmul \suc{n} \\ + \end{align*} +\end{proof} + +\begin{proposition}\label{naturals_rmul_assoc} + Suppose $n,m,k \in \naturals$. + Then $n \rmul (m \rmul k) = (n \rmul m) \rmul k$. +\end{proposition} +\begin{proof} + Let $P = \{ n \in \naturals \mid \text{for all $m,k \in \naturals$ we have $n \rmul (m \rmul k) = (n \rmul m) \rmul k$ }\}$. + $\zero \in P$. + It suffices to show that for all $n' \in P$ we have $ \suc{n'} \in P$. + Fix $n' \in P$. + It suffices to show that for all $m' \in \naturals$ we have for all $k' \in \naturals$ we have $\suc{n'} \rmul (m' \rmul k') = (\suc{n'} \rmul m') \rmul k'$. + Fix $m' \in \naturals$. + Fix $k' \in \naturals$. + \begin{align*} + \suc{n'} \rmul (m' \rmul k') \\ + &=(n' \rmul (m' \rmul k')) + (m' \rmul k') \\ + &=((n' \rmul m') \rmul k') + (m' \rmul k') \\ + &=(k' \rmul (n' \rmul m')) + (k' \rmul m') \\ + &=k' \rmul ((n' \rmul m') + m') \\ + &=k' \rmul (\suc{n'} \rmul m') \\ + &=(\suc{n'} \rmul m') \rmul k' + \end{align*} +\end{proof} + +\begin{lemma}\label{naturals_is_equal_to_two_times_naturals} + $\{x+y \mid x \in \naturals, y \in \naturals \} = \naturals$. +\end{lemma} + + +\subsection{Axioms of the reals Part One} +We seen before that we can proof the common behavior of the naturals. +Since we now want to get furhter in a more efficient way, we introduce the basis axioms of the reals. +Such that we can introduce the integers and raitionals as smooth as possible. + + + +The operations Multiplication and addition is closed in the reals +\begin{axiom}\label{reals_rmul} + For all $n,m \in \reals$ we have $(n \rmul m) \in \reals$. \end{axiom} -\begin{axiom}\label{reals_axiom_kommu} - For all $x,y \in \reals$ $x + y = y + x$ and $x \times y = y \times x$. +\begin{axiom}\label{reals_add} + For all $n,m \in \reals$ we have $(n + m) \in \reals$. \end{axiom} -\begin{axiom}\label{reals_axiom_zero_in_reals} - $\zero \in \reals$. + + + +Commutivatiy of the standart operations +\begin{axiom}\label{reals_axiom_kommu} + For all $x,y \in \reals$ $x + y = y + x$ and $x \rmul y = y \rmul x$. \end{axiom} +\begin{axiom}\label{reals_axiom_assoc} + For all $x,y,z \in \reals$ we have $(x + y) + z = x + (y + z)$. +\end{axiom} + + +Existence of one and Zero \begin{axiom}\label{reals_axiom_zero} For all $x \in \reals$ $x + \zero = x$. \end{axiom} \begin{axiom}\label{reals_axiom_one} - For all $x \in \reals$ $1 \neq \zero$ and $x \times 1 = x$. + For all $x \in \reals$ we have $x \rmul 1 = x$. \end{axiom} + + +The Existence of Inverse of both operations \begin{axiom}\label{reals_axiom_add_invers} For all $x \in \reals$ there exist $y \in \reals$ such that $x + y = \zero$. \end{axiom} - \begin{axiom}\label{reals_axiom_mul_invers} - For all $x \in \reals$ such that $x \neq \zero$ there exist $y \in \reals$ such that $x \times y = 1$. + For all $x \in \reals$ such that $x \neq \zero$ there exist $y \in \reals$ such that $x \rmul y = 1$. \end{axiom} + + +Disstrubitiv Laws of the reals \begin{axiom}\label{reals_axiom_disstro1} - For all $x,y,z \in \reals$ $x \times (y + z) = (x \times y) + (x \times z)$. + For all $x,y,z \in \reals$ $x \rmul (y + z) = (x \rmul y) + (x \rmul z)$. +\end{axiom} + +\begin{axiom}\label{reals_disstro2} + For all $x,y,z \in \reals$ $(y + z) \rmul x = (y \rmul x) + (z \rmul x)$. \end{axiom} -\begin{proposition}\label{reals_disstro2} - For all $x,y,z \in \reals$ $(y + z) \times x = (y \times x) + (z \times x)$. -\end{proposition} -\begin{proposition}\label{reals_reducion_on_addition} - For all $x,y,z \in \reals$ if $x + y = x + z$ then $y = z$. -\end{proposition} -\begin{axiom}\label{reals_axiom_dedekind_complete} +Definition of the order symbols +\begin{abbreviation}\label{rless} + $x < y$ iff $x \rless y$. +\end{abbreviation} + +\begin{abbreviation}\label{less_on_reals} + $x \leq y$ iff $x < y \lor x = y$. +\end{abbreviation} + +\begin{abbreviation}\label{greater_on_reals} + $x > y$ iff $y < x$. +\end{abbreviation} + +\begin{abbreviation}\label{greatereq_on_reals} + $x \geq y$ iff $y \leq x$. +\end{abbreviation} + + + +Laws of the order on the reals +\begin{abbreviation}\label{is_positiv} + $x$ is positiv iff $x > \zero$. +\end{abbreviation} + +\begin{axiom}\label{reals_order} + For all $x,y \in \reals$ we have if $x < y$ then $\lnot y < x$. +\end{axiom} + +\begin{axiom}\label{reals_dense} + For all $x,y \in \reals$ if $x < y$ then + there exist $z \in \reals$ such that $x < z$ and $z < y$. +\end{axiom} + +\begin{axiom}\label{reals_is_eta_zero_set} For all $X,Y,x,y$ such that $X,Y \subseteq \reals$ and $x \in X$ and $y \in Y$ and $x < y$ we have there exist $z \in \reals$ such that $x < z < y$. \end{axiom} +\begin{axiom}\label{reals_one_bigger_zero} + $\zero < 1$. +\end{axiom} + +\begin{axiom}\label{reals_order_behavior_with_addition} + For all $x,y \in \reals$ such that $x < y$ we have for all $z \in \reals$ $x + z < y + z$. +\end{axiom} + +\begin{axiom}\label{reals_postiv_mul_is_positiv} + For all $x,y \in \reals$ such that $\zero < x,y$ we have $\zero < (x \rmul y)$. +\end{axiom} + +\begin{axiom}\label{reals_postiv_mul_negativ_is_negativ} + For all $x,y \in \reals$ such that $x < \zero < y$ we have $(x \rmul y) < \zero$. +\end{axiom} + +\begin{axiom}\label{reals_negativ_mul_is_negativ} + For all $x,y \in \reals$ such that $x,y < \zero$ we have $\zero < (x \rmul y)$. +\end{axiom} + + + + +\subsection{The Intergers} + + +\begin{axiom}\label{neg} + For all $n \in \reals$ we have $\neg{n} \in \reals$ and $n + \neg{n} = \zero$. +\end{axiom} + +\begin{axiom}\label{neg_of_zero} + $\neg{\zero} = \zero$. +\end{axiom} + +\begin{definition}\label{minus} + $n - m = n + \neg{m}$. +\end{definition} + +\begin{lemma}\label{minus_in_reals} + Suppose $n,m \in \reals$. + Then $n - m \in \reals$. +\end{lemma} +\begin{proof} + \begin{byCase} + \caseOf{$m = \zero$.} Trivial. + \caseOf{$m \neq \zero$.} Trivial. + \end{byCase} +\end{proof} + +\begin{proposition}\label{negation_of_negation_is_id} + For all $r \in \reals$ we have $\neg{\neg{r}} = r$. +\end{proposition} +\begin{proof} + Omitted. +% Fix $r \in \reals$. +% $r + \neg{r} = \zero$. +% $\neg{r} + \neg{\neg{r}} = \zero$. +% Follows by \cref{neg,reals_axiom_kommu}. +\end{proof} + +\begin{definition}\label{integers} + $\integers = \{ z \in \reals \mid \exists n \in \naturals. z \in \naturals \lor n + z = \zero\}$. +\end{definition} + +\begin{lemma}\label{n_subset_z} + $\naturals \subseteq \integers$. +\end{lemma} + +\begin{lemma}\label{neg_of_naturals_in_integers} + For all $n \in \naturals$ we have $\neg{n} \in \integers$. +\end{lemma} + +\begin{lemma}\label{integers_eq_naturals_and_negativ_naturals} + $\integers = \{ z \in \reals \mid \exists n \in \naturals. n = z \lor \neg{n} = z\}$. +\end{lemma} +\begin{proof} + Omitted. +\end{proof} + +\begin{abbreviation}\label{positiv_real_number} + $r$ is a positiv real number iff $r > \zero$ and $r \in \reals$. +\end{abbreviation} + + + +\subsection{The Rationals} + +\begin{axiom}\label{invers_reals} + For all $q \in \reals$ we have $\inv{q} \rmul q = 1$. +\end{axiom} + +\begin{abbreviation}\label{rfrac} + $\rfrac{x}{y} = x \rmul \inv{y}$. +\end{abbreviation} + +\begin{abbreviation}\label{naturalsplus} + $\naturalsPlus = \naturals \setminus \{\zero\}$. +\end{abbreviation} + +\begin{definition}\label{rationals} %TODO: Vielleicht ist hier die definition das alle inversen von den ganzenzahlen und die ganzenzahlen selbst die rationalen zahlen erzeugen + $\rationals = \{ q \in \reals \mid \exists z \in \integers. \exists n \in (\integers \setminus \{\zero\}). q = \rfrac{z}{n} \}$. +\end{definition} + +\begin{abbreviation}\label{nominator} + $z$ is nominator of $q$ iff there exists $n \in \naturalsPlus$ such that $q = \rfrac{z}{n}$. +\end{abbreviation} + +\begin{abbreviation}\label{denominator} + $n$ is denominator of $q$ iff there exists $z \in \integers$ such that $q = \rfrac{z}{n}$. +\end{abbreviation} + +\begin{theorem}\label{one_divided_by_n_is_in_zero_to_one} + For all $n \in \naturalsPlus$ we have $\zero < \rfrac{1}{n} \leq 1$. +\end{theorem} +\begin{proof} + Omitted. +\end{proof} + +\begin{lemma}\label{fraction_kuerzung} %TODO: Englischen namen rausfinden + For all $n,m,k \in \reals$ we have $\rfrac{n \rmul k}{m \rmul k} = \rfrac{n}{m}$. +\end{lemma} +\begin{proof} + Omitted. +\end{proof} + +\begin{lemma}\label{fraction_swap} + For all $n,m,k,l \in \reals$ we have $\rfrac{\rfrac{n}{m}}{\rfrac{k}{l}}=\rfrac{n \rmul l}{m \rmul k}$. +\end{lemma} +\begin{proof} + Omitted. +\end{proof} + +\begin{definition}\label{divisor} + $g$ is a integral divisor of $a$ iff $g \in \naturals$ and there exist $b \in \integers$ such that $g \rmul b = a$. +\end{definition} + + + + +%\begin{abbreviation}\label{gcd} +% $g$ is greatest common divisor of $\{a,b\}$ iff +% $g$ is a integral divisor of $a$ +% and $g$ is a integral divisor of $b$ +% and for all $g'$ such that $g'$ is a integral divisor of $a$ +% and $g'$ is a integral divisor of $b$ we have $g' \leq g$. +%\end{abbreviation} +% TODO: Was man noch so beweisen könnte: bruch kürzung, kehrbruch eigenschaften, bruch in bruch vereinfachung, + + +\subsection{Order on the reals} + +\begin{axiom}\label{reals_order_is_transitive} + For all $x,y,z \in \reals$ such that $x < y$ and $y < z$ we have $x < z$. +\end{axiom} + + +\begin{lemma}\label{plus_one_order} + For all $r\in \reals$ we have $ r < r + 1$. +\end{lemma} +\begin{proof} + Omitted. +\end{proof} + +\begin{lemma}\label{negation_and_order} + Suppose $r \in \reals$. + $r \leq \zero$ iff $\zero \leq \neg{r}$. +\end{lemma} +\begin{proof} + Omitted. +\end{proof} + + +\begin{lemma}\label{reals_add_of_positiv} + Let $x,y \in \reals$. + Suppose $x$ is positiv and $y$ is positiv. + Then $x + y$ is positiv. +\end{lemma} +\begin{proof} + Omitted. +\end{proof} + +\begin{lemma}\label{reals_mul_of_positiv} + Let $x,y \in \reals$. + Suppose $x$ is positiv and $y$ is positiv. + Then $x \rmul y$ is positiv. +\end{lemma} +\begin{proof} + Omitted. +\end{proof} + + + +\begin{lemma}\label{order_reals_lemma0} + For all $x \in \reals$ we have not $x < x$. +\end{lemma} +\begin{proof} + Omitted. +\end{proof} + \begin{lemma}\label{order_reals_lemma1} - For all $x,y,z \in \reals$ such that $\zero < x$ - if $y < z$ - then $(y \times x) < (z \times x)$. + Let $x,y,z \in \reals$. + Suppose $\zero < x$. + Suppose $y < z$. + Then $(y \rmul x) < (z \rmul x)$. \end{lemma} +\begin{proof} + Omitted. + %There exist $k \in \reals$ such that $y + k = z$ and $k > \zero$ by \cref{reals_definition_order_def}. + %\begin{align*} + % (z \rmul x) \\ + % &= ((y + k) \rmul x) \\ + % &= ((y \rmul x) + (k \rmul x)) \explanation{by \cref{reals_disstro2}} + %\end{align*} + %Then $(k \rmul x) > \zero$. + %Therefore $(z \rmul x) > (y \rmul x)$. +\end{proof} \begin{lemma}\label{order_reals_lemma2} - For all $x,y,z \in \reals$ such that $\zero < x$ - if $y < z$ - then $(x \times y) < (x \times z)$. + Let $x,y,z \in \reals$. + Suppose $\zero < x$. + Suppose $y < z$. + Then $(x \rmul y) < (x \rmul z)$. \end{lemma} +\begin{proof} + Omitted. +\end{proof} \begin{lemma}\label{order_reals_lemma3} - For all $x,y,z \in \reals$ such that $x < \zero$ - if $y < z$ - then $(x \times z) < (x \times y)$. + Let $x,y,z \in \reals$. + Suppose $\zero > x$. + Suppose $y < z$. + Then $(x \rmul z) < (x \rmul y)$. \end{lemma} +\begin{proof} + Omitted. +\end{proof} -\begin{lemma}\label{o4rder_reals_lemma} - For all $x,y \in \reals$ if $x > y$ then $x \geq y$. +\begin{lemma}\label{order_reals_lemma00} + For all $x,y \in \reals$ such that $x > y$ we have $x \geq y$. \end{lemma} +\begin{proof} + Omitted. +\end{proof} \begin{lemma}\label{order_reals_lemma5} - For all $x,y \in \reals$ if $x < y$ then $x \leq y$. + For all $x,y \in \reals$ such that $x < y$ we have $x \leq y$. \end{lemma} +\begin{proof} + Omitted. +\end{proof} \begin{lemma}\label{order_reals_lemma6} - For all $x,y \in \reals$ if $x \leq y \leq x$ then $x=y$. + For all $x,y \in \reals$ such that $x \leq y \leq x$ we have $x=y$. \end{lemma} - -\begin{axiom}\label{reals_axiom_minus} - For all $x \in \reals$ $x - x = \zero$. -\end{axiom} +\begin{proof} + Omitted. +\end{proof} \begin{lemma}\label{reals_minus} Assume $x,y \in \reals$. If $x - y = \zero$ then $x=y$. \end{lemma} - -%\begin{definition}\label{reasl_supremum} %expaction "there exists" after \mid -% $\rsup{X} = \{z \mid \text{ $z \in \reals$ and for all $x,y$ such that $x \in X$ and $y,x \in \reals$ and $x < y$ we have $z \leq y$ }\}$. -%\end{definition} +\begin{proof} + Omitted. +\end{proof} \begin{definition}\label{upper_bound} $x$ is an upper bound of $X$ iff for all $y \in X$ we have $x > y$. @@ -168,6 +741,9 @@ %Let $x,y \in \reals$ and let $X$ be a subset of $\reals$. If $x$ is a least upper bound of $X$ and $y$ is a least upper bound of $X$ then $x = y$. \end{lemma} +\begin{proof} + Omitted. +\end{proof} \begin{definition}\label{supremum_reals} $x$ is the supremum of $X$ iff $x$ is a least upper bound of $X$. @@ -185,11 +761,83 @@ \end{definition} \begin{lemma}\label{infimum_unique} - %Let $x,y \in \reals$ and let $X$ be a subset of $\reals$. If $x$ is a greatest lower bound of $X$ and $y$ is a greatest lower bound of $X$ then $x = y$. \end{lemma} +\begin{proof} + Omitted. +\end{proof} \begin{definition}\label{infimum_reals} $x$ is the supremum of $X$ iff $x$ is a greatest lower bound of $X$. \end{definition} +\begin{definition}\label{minimum} + $\min{X} = \{x \in X \mid \forall y \in X. x \leq y \}$. +\end{definition} + + +\begin{definition}\label{maximum} + $\max{X} = \{x \in X \mid \forall y \in X. x \geq y \}$. +\end{definition} + + +\begin{definition}\label{intervalclosed} + $\intervalclosed{a}{b} = \{x \in \reals \mid a \leq x \leq b\}$. +\end{definition} + + +\begin{definition}\label{intervalopen} + $\intervalopen{a}{b} = \{ x \in \reals \mid a < x < b\}$. +\end{definition} + +\begin{definition}\label{intervalopen_infinite_left} + $\intervalopenInfiniteLeft{b} = \{ x \in \reals \mid x < b\}$. +\end{definition} + +\begin{definition}\label{intervalopen_infinite_right} + $\intervalopenInfiniteRight{a} = \{ x \in \reals \mid x > a\}$. +\end{definition} + +\begin{definition}\label{intervalclosed_infinite_left} + $\intervalclosedInfiniteLeft{b} = \{ x \in \reals \mid x \leq b\}$. +\end{definition} + +\begin{definition}\label{intervalclosed_infinite_right} + $\intervalclosedInfiniteRight{a} = \{ x \in \reals \mid x \geq a\}$. +\end{definition} + + +\begin{definition}\label{m_to_n_set} + $\seq{m}{n} = \{x \in \naturals \mid m \leq x \leq n\}$. +\end{definition} + +\begin{axiom}\label{abs_behavior1} + If $x \geq \zero$ then $\abs{x} = x$. +\end{axiom} + +\begin{axiom}\label{abs_behavior2} + If $x < \zero$ then $\abs{x} = \neg{x}$. +\end{axiom} + +\begin{definition}\label{realsminus} + $\realsminus = \{r \in \reals \mid r < \zero\}$. +\end{definition} + +\begin{definition}\label{realsplus} + $\realsplus = \{r \in \reals \mid r > \zero\}$. +\end{definition} + +\begin{definition}\label{epsilon_ball} + $\epsBall{x}{\epsilon} = \intervalopen{x-\epsilon}{x+\epsilon}$. +\end{definition} + + + + + + + + +%\begin{proposition}\label{safe} +% Contradiction. +%\end{proposition} |
