summaryrefslogtreecommitdiff
path: root/library/numbers.tex
diff options
context:
space:
mode:
Diffstat (limited to 'library/numbers.tex')
-rw-r--r--library/numbers.tex62
1 files changed, 31 insertions, 31 deletions
diff --git a/library/numbers.tex b/library/numbers.tex
index d3af3f1..a675ea5 100644
--- a/library/numbers.tex
+++ b/library/numbers.tex
@@ -93,8 +93,8 @@
For all $n,m \in \naturals$ we have $(n + m) \in \naturals$.
\end{axiom}
-\subsubsection{Natural numbers as ordinals}
+\subsubsection{Natural numbers as ordinals}
\begin{lemma}\label{nat_is_successor_ordinal}
Let $n\in\naturals$.
@@ -187,7 +187,7 @@
Follows by \cref{suc_eq_plus_one,naturals_addition_axiom_2,naturals_addition_axiom_1,naturals_inductive_set,one_is_suc_zero}.
\end{proof}
-\begin{proposition}\label{naturals_add_kommu}
+\begin{proposition}\label{naturals_add_comm}
For all $n \in \naturals$ we have for all $m\in \naturals$ we have $n + m = m + n$.
\end{proposition}
\begin{proof}
@@ -235,17 +235,17 @@
\end{align*}
\end{proof}
-\begin{proposition}\label{naturals_add_remove_brakets}
+\begin{proposition}\label{naturals_add_remove_parens}
Suppose $n,m,k \in \naturals$.
- Then $(n + m) + k = n + m + k = n + (m + k)$.
+ Then $(n + m) + k = n + m + k = n + (m + k)$.
\end{proposition}
-\begin{proposition}\label{naturals_add_remove_brakets2}
+\begin{proposition}\label{naturals_add_remove_parens2}
Suppose $n,m,k,l \in \naturals$.
- Then $(n + m) + (k + l)= n + m + k + l = n + (m + k) + l = (((n + m) + k) + l)$.
+ Then $(n + m) + (k + l)= n + m + k + l = n + (m + k) + l = (((n + m) + k) + l)$.
\end{proposition}
-%\begin{proposition}\label{natural_disstro_oneline}
+%\begin{proposition}\label{natural_distrib_oneline}
% Suppose $n,m,k \in \naturals$.
% Then $n \rmul (m + k) = (n \rmul m) + (n \rmul k)$.
%\end{proposition}
@@ -262,7 +262,7 @@
% $ \suc{n} \rmul (m' + k') = (n \rmul (m' + k')) + (m' + k') = ((n \rmul m') + (n \rmul k')) + (m' + k') = ((n \rmul m') + (n \rmul k')) + m' + k' = (((n \rmul m') + (n \rmul k')) + m') + k' = (m' + ((n \rmul m') + (n \rmul k'))) + k' = ((m' + (n \rmul m')) + (n \rmul k')) + k' = (((n \rmul m') + m') + (n \rmul k')) + k' = ((n \rmul m') + m') + ((n \rmul k') + k') = (\suc{n} \rmul m') + (\suc{n} \rmul k')$.
%\end{proof}
-\begin{proposition}\label{natural_disstro}
+\begin{proposition}\label{natural_distrib}
Suppose $n,m,k \in \naturals$.
Then $n \rmul (m + k) = (n \rmul m) + (n \rmul k)$.
\end{proposition}
@@ -283,11 +283,11 @@
\suc{n} \rmul (m' + k') \\
&= (n \rmul (m' + k')) + (m' + k') \\% \explanation{by \cref{naturals_mul_axiom_2}}\\
&= ((n \rmul m') + (n \rmul k')) + (m' + k') \\%\explanation{by assumption}\\
- &= ((n \rmul m') + (n \rmul k')) + m' + k' \\%\explanation{by \cref{naturals_add_remove_brakets,naturals_add_kommu}}\\
- &= (((n \rmul m') + (n \rmul k')) + m') + k' \\%\explanation{by \cref{naturals_add_kommu,naturals_add_remove_brakets,naturals_add_assoc}}\\
- &= (m' + ((n \rmul m') + (n \rmul k'))) + k' \\%\explanation{by \cref{naturals_add_kommu}}\\
+ &= ((n \rmul m') + (n \rmul k')) + m' + k' \\%\explanation{by \cref{naturals_add_remove_parens,naturals_add_comm}}\\
+ &= (((n \rmul m') + (n \rmul k')) + m') + k' \\%\explanation{by \cref{naturals_add_comm,naturals_add_remove_parens,naturals_add_assoc}}\\
+ &= (m' + ((n \rmul m') + (n \rmul k'))) + k' \\%\explanation{by \cref{naturals_add_comm}}\\
&= ((m' + (n \rmul m')) + (n \rmul k')) + k' \\%\explanation{by \cref{naturals_add_assoc}}\\
- &= (((n \rmul m') + m') + (n \rmul k')) + k' \\%\explanation{by \cref{naturals_add_kommu}}\\
+ &= (((n \rmul m') + m') + (n \rmul k')) + k' \\%\explanation{by \cref{naturals_add_comm}}\\
&= ((n \rmul m') + m') + ((n \rmul k') + k') \\%\explanation{by \cref{naturals_add_assoc}}\\
&= (\suc{n} \rmul m') + (\suc{n} \rmul k') %\explanation{by \cref{naturals_mul_axiom_2}}
\end{align*}
@@ -353,7 +353,7 @@
&=(k' \rmul (n' \rmul m')) + (k' \rmul m') \\
&=k' \rmul ((n' \rmul m') + m') \\
&=k' \rmul (\suc{n'} \rmul m') \\
- &=(\suc{n'} \rmul m') \rmul k'
+ &=(\suc{n'} \rmul m') \rmul k'
\end{align*}
\end{proof}
@@ -385,7 +385,7 @@ Commutivatiy of the standart operations
\begin{axiom}\label{reals_axiom_kommu}
For all $x,y \in \reals$ $x + y = y + x$ and $x \rmul y = y \rmul x$.
\end{axiom}
-
+
\begin{axiom}\label{reals_axiom_assoc}
For all $x,y,z \in \reals$ we have $(x + y) + z = x + (y + z)$.
\end{axiom}
@@ -393,7 +393,7 @@ Commutivatiy of the standart operations
Existence of one and Zero
\begin{axiom}\label{reals_axiom_zero}
- For all $x \in \reals$ $x + \zero = x$.
+ For all $x \in \reals$ $x + \zero = x$.
\end{axiom}
\begin{axiom}\label{reals_axiom_one}
@@ -453,7 +453,7 @@ Laws of the order on the reals
\end{axiom}
\begin{axiom}\label{reals_dense}
- For all $x,y \in \reals$ if $x < y$ then
+ For all $x,y \in \reals$ if $x < y$ then
there exist $z \in \reals$ such that $x < z$ and $z < y$.
\end{axiom}
@@ -471,15 +471,15 @@ Laws of the order on the reals
\end{axiom}
\begin{axiom}\label{reals_postiv_mul_is_positiv}
- For all $x,y \in \reals$ such that $\zero < x,y$ we have $\zero < (x \rmul y)$.
+ For all $x,y \in \reals$ such that $\zero < x,y$ we have $\zero < (x \rmul y)$.
\end{axiom}
\begin{axiom}\label{reals_postiv_mul_negativ_is_negativ}
- For all $x,y \in \reals$ such that $x < \zero < y$ we have $(x \rmul y) < \zero$.
+ For all $x,y \in \reals$ such that $x < \zero < y$ we have $(x \rmul y) < \zero$.
\end{axiom}
\begin{axiom}\label{reals_negativ_mul_is_negativ}
- For all $x,y \in \reals$ such that $x,y < \zero$ we have $\zero < (x \rmul y)$.
+ For all $x,y \in \reals$ such that $x,y < \zero$ we have $\zero < (x \rmul y)$.
\end{axiom}
@@ -603,12 +603,12 @@ Laws of the order on the reals
%\begin{abbreviation}\label{gcd}
% $g$ is greatest common divisor of $\{a,b\}$ iff
-% $g$ is a integral divisor of $a$
-% and $g$ is a integral divisor of $b$
+% $g$ is a integral divisor of $a$
+% and $g$ is a integral divisor of $b$
% and for all $g'$ such that $g'$ is a integral divisor of $a$
% and $g'$ is a integral divisor of $b$ we have $g' \leq g$.
%\end{abbreviation}
-% TODO: Was man noch so beweisen könnte: bruch kürzung, kehrbruch eigenschaften, bruch in bruch vereinfachung,
+% TODO: Was man noch so beweisen könnte: bruch kürzung, kehrbruch eigenschaften, bruch in bruch vereinfachung,
\subsection{Order on the reals}
@@ -664,8 +664,8 @@ Laws of the order on the reals
\begin{lemma}\label{order_reals_lemma1}
Let $x,y,z \in \reals$.
- Suppose $\zero < x$.
- Suppose $y < z$.
+ Suppose $\zero < x$.
+ Suppose $y < z$.
Then $(y \rmul x) < (z \rmul x)$.
\end{lemma}
\begin{proof}
@@ -675,15 +675,15 @@ Laws of the order on the reals
% (z \rmul x) \\
% &= ((y + k) \rmul x) \\
% &= ((y \rmul x) + (k \rmul x)) \explanation{by \cref{reals_disstro2}}
- %\end{align*}
- %Then $(k \rmul x) > \zero$.
+ %\end{align*}
+ %Then $(k \rmul x) > \zero$.
%Therefore $(z \rmul x) > (y \rmul x)$.
\end{proof}
\begin{lemma}\label{order_reals_lemma2}
Let $x,y,z \in \reals$.
- Suppose $\zero < x$.
- Suppose $y < z$.
+ Suppose $\zero < x$.
+ Suppose $y < z$.
Then $(x \rmul y) < (x \rmul z)$.
\end{lemma}
\begin{proof}
@@ -693,8 +693,8 @@ Laws of the order on the reals
\begin{lemma}\label{order_reals_lemma3}
Let $x,y,z \in \reals$.
- Suppose $\zero > x$.
- Suppose $y < z$.
+ Suppose $\zero > x$.
+ Suppose $y < z$.
Then $(x \rmul z) < (x \rmul y)$.
\end{lemma}
\begin{proof}
@@ -808,7 +808,7 @@ Laws of the order on the reals
\begin{definition}\label{m_to_n_set}
- $\seq{m}{n} = \{x \in \naturals \mid m \leq x \leq n\}$.
+ $\seq{m}{n} = \{x \in \naturals \mid m \leq x \leq n\}$.
\end{definition}
\begin{axiom}\label{abs_behavior1}