summaryrefslogtreecommitdiff
path: root/library/order/order.tex
diff options
context:
space:
mode:
Diffstat (limited to 'library/order/order.tex')
-rw-r--r--library/order/order.tex102
1 files changed, 102 insertions, 0 deletions
diff --git a/library/order/order.tex b/library/order/order.tex
new file mode 100644
index 0000000..339bad8
--- /dev/null
+++ b/library/order/order.tex
@@ -0,0 +1,102 @@
+\import{relation.tex}
+\import{relation/properties.tex}
+\import{order/quasiorder.tex}
+
+% also called "(partial) ordering" or "partial order" to contrast with connex (i.e. "total") orders.
+\begin{abbreviation}\label{order}
+ $R$ is an order iff
+ $R$ is an antisymmetric quasiorder.
+\end{abbreviation}
+
+\begin{abbreviation}\label{order_on}
+ $R$ is an order on $A$ iff
+ $R$ is an antisymmetric quasiorder on $A$.
+\end{abbreviation}
+
+\begin{abbreviation}\label{strictorder}
+ $R$ is a strict order iff
+ $R$ is transitive and asymmetric.
+\end{abbreviation}
+
+\begin{struct}\label{orderedset}
+ An ordered set $X$ is a quasiordered set
+ such that
+ \begin{enumerate}
+ \item\label{orderedset_antisym} $\lt[X]$ is antisymmetric.
+ \end{enumerate}
+\end{struct}
+
+\begin{definition}\label{tostrictorder}
+ $\tostrictorder{R} = \{w\in R\mid \fst{w}\neq\snd{w}\}$.
+\end{definition}
+
+\begin{definition}\label{toorder}
+ $\toorder{A}{R} = R\union\identity{A}$.
+\end{definition}
+
+\begin{proposition}\label{tostrictorder_iff}
+ $(a,b)\in\tostrictorder{R}$ iff $(a,b)\in R$ and $a\neq b$.
+\end{proposition}
+\begin{proof}
+ Follows by \cref{tostrictorder,fst_eq,snd_eq}.
+\end{proof}
+
+\begin{proposition}\label{toorder_reflexive}
+ $\toorder{A}{R}$ is reflexive on $A$.
+\end{proposition}
+
+\begin{proposition}\label{toorder_intro}
+ Suppose $(a,b)\in R$.
+ Then $(a,b)\in\toorder{A}{R}$.
+\end{proposition}
+\begin{proof}
+ $R\subseteq\toorder{A}{R}$.
+\end{proof}
+
+\begin{proposition}\label{toorder_elim}
+ Suppose $(a,b)\in\toorder{A}{R}$.
+ Then $(a,b)\in R$ or $a = b$.
+\end{proposition}
+\begin{proof}
+ Follows by \cref{toorder,id,union_iff,upair_intro_right,tostrictorder_iff}.
+\end{proof}
+
+\begin{proposition}\label{toorder_iff}
+ $(a,b)\in\toorder{A}{R}$ iff $(a,b)\in R$ or $a = b\in A$.
+\end{proposition}
+
+\begin{proposition}\label{strictorder_from_order}
+ Suppose $R$ is an order.
+ Then $\tostrictorder{R}$ is a strict order.
+\end{proposition}
+\begin{proof}
+ $\tostrictorder{R}$ is asymmetric.
+ $\tostrictorder{R}$ is transitive.
+\end{proof}
+
+\begin{proposition}\label{order_from_strictorder}
+ Suppose $R$ is a strict order.
+ Suppose $R$ is a binary relation on $A$.
+ Then $\toorder{A}{R}$ is an order on $A$.
+\end{proposition}
+\begin{proof}
+ $\toorder{A}{R}$ is antisymmetric.
+ $\toorder{A}{R}$ is transitive by \cref{transitive,toorder_iff}.
+ $\toorder{A}{R}$ is reflexive on $A$.
+\end{proof}
+
+\begin{proposition}\label{subseteqrel_antisymmetric}
+ $\subseteqrel{A}$ is antisymmetric.
+\end{proposition}
+\begin{proof}
+ Follows by \cref{subseteqrel,antisymmetric,pair_eq_iff,subseteq_antisymmetric}.
+\end{proof}
+
+
+\begin{proposition}\label{subseteqrel_is_order}
+ $\subseteqrel{A}$ is an order on $A$.
+\end{proposition}
+\begin{proof}
+ $\subseteqrel{A}$ is a quasiorder on $A$ by \cref{subseteqrel_is_quasiorder}.
+ $\subseteqrel{A}$ is antisymmetric by \cref{subseteqrel_antisymmetric}.
+\end{proof}