summaryrefslogtreecommitdiff
path: root/library/order/semilattice.tex
diff options
context:
space:
mode:
Diffstat (limited to 'library/order/semilattice.tex')
-rw-r--r--library/order/semilattice.tex41
1 files changed, 41 insertions, 0 deletions
diff --git a/library/order/semilattice.tex b/library/order/semilattice.tex
new file mode 100644
index 0000000..51af68b
--- /dev/null
+++ b/library/order/semilattice.tex
@@ -0,0 +1,41 @@
+\import{order/partial-order.tex}
+
+\begin{struct}\label{meet_semilattice}
+ A meet semilattice $X$ is a partial order
+ equipped with
+ \begin{enumerate}
+ \item $\meet$
+ \end{enumerate}
+ such that
+ \begin{enumerate}
+ \item\label{meet_type} for all $x,y\in \carrier[X]$ we have
+ $\meet[X](x,y)\in X$.
+ \item\label{meet_lb} for all $x,y\in \carrier[X]$ we have
+ $\meet[X](x,y) \mathrel{\lt[X]} x, y$.
+ \item\label{meet_glb} for all $a,x,y\in \carrier[X]$ such that $a\mathrel{\lt[X]} x, y$ we have
+ $a\mathrel{\lt[X]} \meet[X](x,y)$.
+ \end{enumerate}
+\end{struct}
+
+
+\begin{proposition}\label{meet_idempotent}
+ Let $X$ be a meet semilattice.
+ Then $\meet(x,x) = x$.
+\end{proposition}
+\begin{proof}
+ $\meet(x,x) \mathrel{\lt} x$.
+ $x\mathrel{\lt[X]} x, x$.
+ Thus $x\mathrel{\lt[X]} \meet(x,x)$.
+\end{proof}
+
+%\begin{proposition}\label{meet_comm}
+% Let $X$ be a meet semilattice.
+% Suppose $x, y\in X$.
+% Then $\meet(x,y) = \meet(y,x)$.
+%\end{proposition}
+
+%\begin{proposition}\label{meet_assoc}
+% Let $X$ be a meet semilattice.
+% Suppose $x, y, z\in X$.
+% Then $\meet(x,\meet(y,z)) = \meet(\meet(x,y),z)$.
+%\end{proposition}