diff options
Diffstat (limited to 'library/ordinal.tex')
| -rw-r--r-- | library/ordinal.tex | 9 |
1 files changed, 1 insertions, 8 deletions
diff --git a/library/ordinal.tex b/library/ordinal.tex index c092fa8..f978257 100644 --- a/library/ordinal.tex +++ b/library/ordinal.tex @@ -235,13 +235,6 @@ To show that \in\ is a strict total order it only remains to show that \in\ is c % Goal: ordinal(fgamma)=>(elem(falpha,fgamma)|elem(fgamma,falpha)|falpha=fgamma)) % Assume $\gamma$ is an ordinal. - % Goal: - % elem(falpha,fgamma)|elem(fgamma,falpha)|falpha=fgamma - % - % Original Vampire proof: - % Follows by \cref{setext,transitiveset,ordinal,in_implies_neq,prec_is_ordinal,in_asymmetric}. - % - % Pruned proof: Follows by \cref{setext,transitiveset,ordinal}. \end{subproof} \end{proof} @@ -489,7 +482,7 @@ Then $\alpha\subseteq\beta$. \end{proposition} \begin{proof} % Vampire proof: - Follows by \cref{inters_of_ordinals_is_ordinal,in_implies_neq,inters_iff_forall,ordinal_subseteq_implies_elem_or_eq,inters_subseteq_elem}. + Follows by \cref{inters_of_ordinals_is_ordinal,in_irrefl,inters_iff_forall,ordinal_subseteq_implies_elem_or_eq,inters_subseteq_elem}. \end{proof} \begin{proposition}\label{inters_of_ordinals_is_minimal} |
