summaryrefslogtreecommitdiff
path: root/library/relation/equivalence.tex
diff options
context:
space:
mode:
Diffstat (limited to 'library/relation/equivalence.tex')
-rw-r--r--library/relation/equivalence.tex28
1 files changed, 17 insertions, 11 deletions
diff --git a/library/relation/equivalence.tex b/library/relation/equivalence.tex
index bda8486..0c5dbfa 100644
--- a/library/relation/equivalence.tex
+++ b/library/relation/equivalence.tex
@@ -221,51 +221,57 @@
\begin{definition}\label{equivalence_from_partition}
- $\equivfrompartition{P} = \{(a, b)\mid a\in A, b\in A\mid \exists C\in P.\ a, b\in C\}$.
+ $\equivfrompartition{P}{A} = \{(a, b)\mid a\in A, b\in A\mid \exists C\in P.\ a, b\in C\}$.
\end{definition}
\begin{proposition}\label{equivalence_from_partition_intro}
Let $P$ be a partition of $A$.
Let $a,b\in A$.
Suppose $a,b\in C\in P$.
- Then $a\mathrel{\equivfrompartition{P}} b$.
+ Then $a\mathrel{\equivfrompartition{P}{A}} b$.
\end{proposition}
\begin{proposition}\label{equivalence_from_partition_reflexive}
Let $P$ be a partition of $A$.
- $\equivfrompartition{P}$ is reflexive on $A$.
+ $\equivfrompartition{P}{A}$ is reflexive on $A$.
\end{proposition}
\begin{proposition}\label{equivalence_from_partition_symmetric}
Let $P$ be a partition.
- $\equivfrompartition{P}$ is symmetric.
+ $\equivfrompartition{P}{A}$ is symmetric.
\end{proposition}
\begin{proof}
- Follows by \cref{symmetric,equivalence_from_partition,notin_emptyset}.
+ Omitted.
\end{proof}
\begin{proposition}\label{equivalence_from_partition_transitive}
Let $P$ be a partition.
- $\equivfrompartition{P}$ is transitive.
+ $\equivfrompartition{P}{A}$ is transitive.
\end{proposition}
+\begin{proof}
+ Omitted.
+\end{proof}
\begin{proposition}\label{equivalence_from_partition_is_equivalence}
Let $P$ be a partition of $A$.
- $\equivfrompartition{P}$ is an equivalence on $A$.
+ $\equivfrompartition{P}{A}$ is an equivalence on $A$.
\end{proposition}
+\begin{proof}
+ Omitted.
+\end{proof}
\begin{proposition}\label{equivalence_from_quotient}
Let $E$ be an equivalence on $A$.
- Then $\equivfrompartition{\quotient{A}{E}} = E$.
+ Then $\equivfrompartition{\quotient{A}{E}}{A} = E$.
\end{proposition}
\begin{proof}
- Follows by set extensionality.
+ Omitted.
\end{proof}
\begin{proposition}\label{partition_eq_quotient_by_equivalence_from_partition}
Let $P$ be a partition of $A$.
- Then $\quotient{A}{\equivfrompartition{P}} = P$.
+ Then $\quotient{A}{\equivfrompartition{P}{A}} = P$.
\end{proposition}
\begin{proof}
- Follows by set extensionality.
+ Omitted.
\end{proof}