summaryrefslogtreecommitdiff
path: root/library/set.tex
diff options
context:
space:
mode:
Diffstat (limited to 'library/set.tex')
-rw-r--r--library/set.tex26
1 files changed, 14 insertions, 12 deletions
diff --git a/library/set.tex b/library/set.tex
index 914e10b..1f7a76a 100644
--- a/library/set.tex
+++ b/library/set.tex
@@ -107,25 +107,28 @@ which applies it to goals of the form “$A = B$” and “$A \neq B$”.
\subsection{The empty set}
-\begin{axiom}%
-\label{notin_emptyset}
+\begin{axiom}\label{emptyset}
For all $a$ we have $a\notin\emptyset$.
\end{axiom}
-\begin{definition}\label{inhabited}
+\begin{abbreviation}\label{inhabited}
$A$ is inhabited iff
there exists $a$ such that $a\in A$.
-\end{definition}
+\end{abbreviation}
\begin{abbreviation}\label{empty}
- $A$ is empty iff $A$ is not inhabited.
+ $A$ is empty iff for all $x$ we have $x\notin A$.
\end{abbreviation}
-%\begin{proposition}%
-%\label{inhabited_iff_nonempty}
-% $A$ is inhabited iff $A$ is not empty.
+\begin{proposition}\label{nonempty_inhabited}
+ Suppose $A\neq\emptyset$. Then $A$ is inhabited.
+\end{proposition}
+
+%\begin{proposition}\label{empty_iff_emptyset}
+% $A$ is empty iff $A = \emptyset$.
%\end{proposition}
+
\begin{proposition}%
\label{empty_eq}
If $x$ and $y$ are empty, then $x = y$.
@@ -133,7 +136,6 @@ which applies it to goals of the form “$A = B$” and “$A \neq B$”.
\begin{proposition}\label{emptyset_subseteq}
For all $a$ we have $\emptyset \subseteq a$.
- % LATER $\emptyset$ is a subset of every set.
\end{proposition}
\begin{proposition}%
@@ -349,6 +351,7 @@ The $\operatorname{\textsf{cons}}$ operation is determined by the following axio
If $c\in B$, then $c\in A\union B$.
\end{proposition}
+% TODO SLOW
\begin{proposition}\label{union_as_unions}
$\unions{\{x,y\}} = x\union y$.
\end{proposition}
@@ -586,8 +589,7 @@ The $\operatorname{\textsf{cons}}$ operation is determined by the following axio
Suppose $A\inter B = A$. Then $A\subseteq B$.
\end{proposition}
-\begin{proposition}%
-\label{subseteq_inter_iff}
+\begin{proposition}\label{subseteq_inter_iff}
$C\subseteq A\inter B$ iff $C\subseteq A$ and $C\subseteq B$.
\end{proposition}
@@ -944,7 +946,7 @@ There are primitive projections $\fst{}$ and $\snd{}$ that satisfy the following
$X\times Y$ is empty iff $X$ is empty or $Y$ is empty.
\end{proposition}
\begin{proof}
- Follows by \cref{inhabited,times}.
+ Follows by \cref{times}.
\end{proof}
\begin{proposition}\label{fst_type}