diff options
Diffstat (limited to 'library/set.tex')
| -rw-r--r-- | library/set.tex | 26 |
1 files changed, 14 insertions, 12 deletions
diff --git a/library/set.tex b/library/set.tex index 914e10b..1f7a76a 100644 --- a/library/set.tex +++ b/library/set.tex @@ -107,25 +107,28 @@ which applies it to goals of the form “$A = B$” and “$A \neq B$”. \subsection{The empty set} -\begin{axiom}% -\label{notin_emptyset} +\begin{axiom}\label{emptyset} For all $a$ we have $a\notin\emptyset$. \end{axiom} -\begin{definition}\label{inhabited} +\begin{abbreviation}\label{inhabited} $A$ is inhabited iff there exists $a$ such that $a\in A$. -\end{definition} +\end{abbreviation} \begin{abbreviation}\label{empty} - $A$ is empty iff $A$ is not inhabited. + $A$ is empty iff for all $x$ we have $x\notin A$. \end{abbreviation} -%\begin{proposition}% -%\label{inhabited_iff_nonempty} -% $A$ is inhabited iff $A$ is not empty. +\begin{proposition}\label{nonempty_inhabited} + Suppose $A\neq\emptyset$. Then $A$ is inhabited. +\end{proposition} + +%\begin{proposition}\label{empty_iff_emptyset} +% $A$ is empty iff $A = \emptyset$. %\end{proposition} + \begin{proposition}% \label{empty_eq} If $x$ and $y$ are empty, then $x = y$. @@ -133,7 +136,6 @@ which applies it to goals of the form “$A = B$” and “$A \neq B$”. \begin{proposition}\label{emptyset_subseteq} For all $a$ we have $\emptyset \subseteq a$. - % LATER $\emptyset$ is a subset of every set. \end{proposition} \begin{proposition}% @@ -349,6 +351,7 @@ The $\operatorname{\textsf{cons}}$ operation is determined by the following axio If $c\in B$, then $c\in A\union B$. \end{proposition} +% TODO SLOW \begin{proposition}\label{union_as_unions} $\unions{\{x,y\}} = x\union y$. \end{proposition} @@ -586,8 +589,7 @@ The $\operatorname{\textsf{cons}}$ operation is determined by the following axio Suppose $A\inter B = A$. Then $A\subseteq B$. \end{proposition} -\begin{proposition}% -\label{subseteq_inter_iff} +\begin{proposition}\label{subseteq_inter_iff} $C\subseteq A\inter B$ iff $C\subseteq A$ and $C\subseteq B$. \end{proposition} @@ -944,7 +946,7 @@ There are primitive projections $\fst{}$ and $\snd{}$ that satisfy the following $X\times Y$ is empty iff $X$ is empty or $Y$ is empty. \end{proposition} \begin{proof} - Follows by \cref{inhabited,times}. + Follows by \cref{times}. \end{proof} \begin{proposition}\label{fst_type} |
