summaryrefslogtreecommitdiff
path: root/library/set/equinumerosity.tex
diff options
context:
space:
mode:
Diffstat (limited to 'library/set/equinumerosity.tex')
-rw-r--r--library/set/equinumerosity.tex68
1 files changed, 68 insertions, 0 deletions
diff --git a/library/set/equinumerosity.tex b/library/set/equinumerosity.tex
new file mode 100644
index 0000000..a846b78
--- /dev/null
+++ b/library/set/equinumerosity.tex
@@ -0,0 +1,68 @@
+\import{set/powerset.tex}
+\import{set/fixpoint.tex}
+\import{function.tex}
+
+
+\begin{definition}\label{equinum}
+ $A$ is equinumerous with $B$ iff there exists a bijection from $A$ to $B$.
+\end{definition}
+
+\begin{abbreviation}\label{approx}
+ $A\approx B$ iff $A$ is equinumerous with $B$.
+\end{abbreviation}
+
+\begin{proposition}\label{equinum_refl}
+ $A\approx A$.
+\end{proposition}
+\begin{proof}
+ $\identity{A}$ is a bijection from $A$ to $A$ by \cref{id_is_bijection}.
+ Follows by \cref{equinum}.
+\end{proof}
+
+\begin{proposition}\label{equinum_sym}
+ Suppose $A\approx B$. Then $B\approx A$.
+\end{proposition}
+\begin{proof}
+ Take a bijection $f$ from $A$ to $B$ by \cref{equinum}.
+ Then $\converse{f}$ is a bijection from $B$ to $A$ by \cref{bijection_converse_is_bijection}.
+ Follows by \cref{equinum}.
+\end{proof}
+
+\begin{proposition}\label{equinum_tran}
+ Suppose $A\approx B\approx C$. Then $A\approx C$.
+\end{proposition}
+\begin{proof}
+ Take a bijection $f$ from $A$ to $B$ by \cref{equinum}.
+ Take a bijection $g$ from $B$ to $C$ by \cref{equinum}.
+ Then $g\circ f$ is a bijection from $A$ to $C$ by \cref{bijection_circ}.
+ Follows by \cref{equinum}.
+\end{proof}
+
+
+
+\begin{theorem}[Cantor--Schröder--Bernstein]\label{cantorschroederbernstein}
+ Let $f$ be an injective function from $A$ to $B$.
+ Let $g$ be an injective function from $B$ to $A$.
+ Then $A\approx B$.
+\end{theorem}
+\begin{proof}
+ Let $h(X) = A\setminus \img{g}{B\setminus\img{f}{X}}$ for $X\in\pow{A}$.
+ %By construction: $h$ is a relation.
+ %By construction: $h$ is right-unique.
+ %By construction: $\dom{h} = \pow{A}$.
+ For all $X\in\pow{A}$ we have $h(X)\in\pow{A}$ by \cref{setminus_subseteq,pow_iff}.
+ Thus $h$ is a function from $\pow{A}$ to $\pow{A}$.
+
+ $h$ is \subseteq-preserving by \cref{subseteqpreserving,img_subseteq,subseteq_implies_setminus_supseteq}. % apply each each lemma twice (alternating).
+
+ Take a fixpoint $X$ of $h$ by \cref{knastertarski}.
+ Now $X = A\setminus \img{g}{B\setminus\img{f}{X}}$ by \cref{fixpoint}.
+
+ $\img{g}{B\setminus\img{f}{X}}\subseteq A$.
+
+ Thus $\img{g}{B\setminus\img{f}{X}} = A\setminus X$ by \cref{double_relative_complement}.
+
+ Let $h' = \restrl{h}{X}$.
+
+ Omitted. % TODO
+\end{proof}