diff options
Diffstat (limited to 'library/set/filter.tex')
| -rw-r--r-- | library/set/filter.tex | 97 |
1 files changed, 97 insertions, 0 deletions
diff --git a/library/set/filter.tex b/library/set/filter.tex new file mode 100644 index 0000000..2797d86 --- /dev/null +++ b/library/set/filter.tex @@ -0,0 +1,97 @@ +\import{set.tex} +\import{set/powerset.tex} + +\section{Filters} + +\begin{abbreviation}\label{upwardclosed} + $F$ is upward-closed in $S$ iff + for all $A, B$ such that $A\subseteq B\subseteq S$ and $A\in F$ we have $B\in F$. +\end{abbreviation} + +\begin{definition}\label{filter} + $F$ is a filter on $S$ iff + $F$ is a family of subsets of $S$ + and $S$ is inhabited + and $S\in F$ + and $\emptyset\notin F$ + and $F$ is closed under binary intersections + and $F$ is upward-closed in $S$. +\end{definition} + +\begin{definition}\label{principalfilter} + $\principalfilter{S}{A} = \{X\in\pow{S}\mid A\subseteq X\}$. +\end{definition} + +%\begin{proposition}\label{principalfilter_domain_inhabited} +% Suppose $F$ is a filter on $S$. +% Then $S$ is inhabited. +%\end{proposition} + +\begin{proposition}\label{principalfilter_is_filter} + Suppose $A\subseteq S$. + Suppose $A$ is inhabited. + Then $\principalfilter{S}{A}$ is a filter on $S$. +\end{proposition} +\begin{proof} + $S$ is inhabited. % since $A$ is inhabited and $A\subseteq S$. + $\principalfilter{S}{A}$ is a family of subsets of $S$. + $S\in \principalfilter{S}{A}$. + $\emptyset\notin \principalfilter{S}{A}$. + $\principalfilter{S}{A}$ is closed under binary intersections. + $\principalfilter{S}{A}$ is upward-closed in $S$. + Follows by \cref{filter}. +\end{proof} + +\begin{proposition}\label{principalfilter_elem_generator} + Suppose $A\subseteq S$. + $A\in\principalfilter{S}{A}$. +\end{proposition} +\begin{proof} + $A\in\pow{S}$. +\end{proof} + +\begin{proposition}\label{principalfilter_notelem_implies_notsupseteq} + Let $X\in\pow{S}$. + Suppose $X\notin\principalfilter{S}{A}$. + Then $A\not\subseteq X$. +\end{proposition} +\begin{proof} +\end{proof} + +\begin{definition}\label{maximalfilter} + $F$ is a maximal filter on $S$ iff + $F$ is a filter on $S$ and there exists no filter $F'$ on $S$ such that $F\subset F'$. +\end{definition} + +\begin{proposition}\label{principalfilter_singleton_is_filter} + Suppose $a\in S$. + Then $\principalfilter{S}{\{a\}}$ is a filter on $S$. +\end{proposition} +\begin{proof} + $\{a\}\subseteq S$. + $\{a\}$ is inhabited. + Follows by \cref{principalfilter_is_filter}. +\end{proof} + +\begin{proposition}\label{principalfilter_singleton_is_maximal_filter} + Suppose $a\in S$. + Then $\principalfilter{S}{\{a\}}$ is a maximal filter on $S$. +\end{proposition} +\begin{proof} + $\{a\}\subseteq S$. + $\{a\}$ is inhabited. + Thus $\principalfilter{S}{\{a\}}$ is a filter on $S$ by \cref{principalfilter_is_filter}. + It suffices to show that there exists no filter $F'$ on $S$ such that $\principalfilter{S}{\{a\}}\subset F'$. + Suppose not. + Take a filter $F'$ on $S$ such that $\principalfilter{S}{\{a\}}\subset F'$. + Take $X\in F'$ such that $X\notin \principalfilter{S}{\{a\}}$. + $X\in\pow{S}$. + Thus $\{a\}\not\subseteq X$ by \cref{principalfilter_notelem_implies_notsupseteq}. + Thus $a\notin X$. + $\{a\}\in F'$ + % TODO clean + by \cref{principalfilter,elem_subseteq,union_intro_left,subset,union_absorb_subseteq_left,subseteq_refl,powerset_intro}. + Thus $\emptyset = X\inter \{a\}$. + Hence $\emptyset\in F'$ by \cref{filter}. + Follows by \hyperref[filter]{contradiction to the definition of a filter}. +\end{proof} |
