summaryrefslogtreecommitdiff
path: root/library/set/filter.tex
diff options
context:
space:
mode:
Diffstat (limited to 'library/set/filter.tex')
-rw-r--r--library/set/filter.tex97
1 files changed, 97 insertions, 0 deletions
diff --git a/library/set/filter.tex b/library/set/filter.tex
new file mode 100644
index 0000000..2797d86
--- /dev/null
+++ b/library/set/filter.tex
@@ -0,0 +1,97 @@
+\import{set.tex}
+\import{set/powerset.tex}
+
+\section{Filters}
+
+\begin{abbreviation}\label{upwardclosed}
+ $F$ is upward-closed in $S$ iff
+ for all $A, B$ such that $A\subseteq B\subseteq S$ and $A\in F$ we have $B\in F$.
+\end{abbreviation}
+
+\begin{definition}\label{filter}
+ $F$ is a filter on $S$ iff
+ $F$ is a family of subsets of $S$
+ and $S$ is inhabited
+ and $S\in F$
+ and $\emptyset\notin F$
+ and $F$ is closed under binary intersections
+ and $F$ is upward-closed in $S$.
+\end{definition}
+
+\begin{definition}\label{principalfilter}
+ $\principalfilter{S}{A} = \{X\in\pow{S}\mid A\subseteq X\}$.
+\end{definition}
+
+%\begin{proposition}\label{principalfilter_domain_inhabited}
+% Suppose $F$ is a filter on $S$.
+% Then $S$ is inhabited.
+%\end{proposition}
+
+\begin{proposition}\label{principalfilter_is_filter}
+ Suppose $A\subseteq S$.
+ Suppose $A$ is inhabited.
+ Then $\principalfilter{S}{A}$ is a filter on $S$.
+\end{proposition}
+\begin{proof}
+ $S$ is inhabited. % since $A$ is inhabited and $A\subseteq S$.
+ $\principalfilter{S}{A}$ is a family of subsets of $S$.
+ $S\in \principalfilter{S}{A}$.
+ $\emptyset\notin \principalfilter{S}{A}$.
+ $\principalfilter{S}{A}$ is closed under binary intersections.
+ $\principalfilter{S}{A}$ is upward-closed in $S$.
+ Follows by \cref{filter}.
+\end{proof}
+
+\begin{proposition}\label{principalfilter_elem_generator}
+ Suppose $A\subseteq S$.
+ $A\in\principalfilter{S}{A}$.
+\end{proposition}
+\begin{proof}
+ $A\in\pow{S}$.
+\end{proof}
+
+\begin{proposition}\label{principalfilter_notelem_implies_notsupseteq}
+ Let $X\in\pow{S}$.
+ Suppose $X\notin\principalfilter{S}{A}$.
+ Then $A\not\subseteq X$.
+\end{proposition}
+\begin{proof}
+\end{proof}
+
+\begin{definition}\label{maximalfilter}
+ $F$ is a maximal filter on $S$ iff
+ $F$ is a filter on $S$ and there exists no filter $F'$ on $S$ such that $F\subset F'$.
+\end{definition}
+
+\begin{proposition}\label{principalfilter_singleton_is_filter}
+ Suppose $a\in S$.
+ Then $\principalfilter{S}{\{a\}}$ is a filter on $S$.
+\end{proposition}
+\begin{proof}
+ $\{a\}\subseteq S$.
+ $\{a\}$ is inhabited.
+ Follows by \cref{principalfilter_is_filter}.
+\end{proof}
+
+\begin{proposition}\label{principalfilter_singleton_is_maximal_filter}
+ Suppose $a\in S$.
+ Then $\principalfilter{S}{\{a\}}$ is a maximal filter on $S$.
+\end{proposition}
+\begin{proof}
+ $\{a\}\subseteq S$.
+ $\{a\}$ is inhabited.
+ Thus $\principalfilter{S}{\{a\}}$ is a filter on $S$ by \cref{principalfilter_is_filter}.
+ It suffices to show that there exists no filter $F'$ on $S$ such that $\principalfilter{S}{\{a\}}\subset F'$.
+ Suppose not.
+ Take a filter $F'$ on $S$ such that $\principalfilter{S}{\{a\}}\subset F'$.
+ Take $X\in F'$ such that $X\notin \principalfilter{S}{\{a\}}$.
+ $X\in\pow{S}$.
+ Thus $\{a\}\not\subseteq X$ by \cref{principalfilter_notelem_implies_notsupseteq}.
+ Thus $a\notin X$.
+ $\{a\}\in F'$
+ % TODO clean
+ by \cref{principalfilter,elem_subseteq,union_intro_left,subset,union_absorb_subseteq_left,subseteq_refl,powerset_intro}.
+ Thus $\emptyset = X\inter \{a\}$.
+ Hence $\emptyset\in F'$ by \cref{filter}.
+ Follows by \hyperref[filter]{contradiction to the definition of a filter}.
+\end{proof}