diff options
Diffstat (limited to 'library/set/partition.tex')
| -rw-r--r-- | library/set/partition.tex | 50 |
1 files changed, 50 insertions, 0 deletions
diff --git a/library/set/partition.tex b/library/set/partition.tex new file mode 100644 index 0000000..ed74bf7 --- /dev/null +++ b/library/set/partition.tex @@ -0,0 +1,50 @@ +\import{set.tex} + +\subsection{Partitions} + +\begin{definition}\label{partition} + $P$ is a partition iff + $\emptyset\notin P$ and + for all $B, C\in P$ such that $B\neq C$ we have $B$ is disjoint from $C$. +\end{definition} + +\begin{abbreviation}\label{partition_of} + $P$ is a partition of $A$ iff + $P$ is a partition and + $\unions{P} = A$. +\end{abbreviation} + +\begin{proposition}\label{partition_emptyset} + $\emptyset$ is a partition of $\emptyset$. +\end{proposition} + +\begin{definition}\label{partition_refinement} + $P'$ is a refinement of $P$ iff + for every $A'\in P'$ there exists + $A\in P$ such that $A'\subseteq A$. +\end{definition} + +\begin{abbreviation}\label{partition_refines} + $P'\refines P$ iff + $P'$ is a refinement of $P$. +\end{abbreviation} + +\begin{proposition}\label{partition_refinement_transitive} + Suppose $P''\refines P'\refines P$. + Then $P''\refines P$. +\end{proposition} +\begin{proof} + It suffices to show that for all $A''\in P''$ there exists $A\in P$ such that $A''\subseteq A$. + Fix $A''\in P''$. + Take $A'\in P'$ such that $A''\subseteq A'$ + by \cref{partition_refinement}. + Take $A\in P$ such that $A'\subseteq A$. + Then $A''\subseteq A$. + Follows by definition. %i.e. A will do for the current existential goal. +\end{proof} + +%\begin{definition}\label{set_of_representatives} +% $X$ is a set of representatives for $P$ iff +% for all $A\in P$ there exists $a\in A$ such that +% $X\inter A = \{a\}$. +%\end{definition} |
