summaryrefslogtreecommitdiff
path: root/library/set/regularity.tex
diff options
context:
space:
mode:
Diffstat (limited to 'library/set/regularity.tex')
-rw-r--r--library/set/regularity.tex70
1 files changed, 70 insertions, 0 deletions
diff --git a/library/set/regularity.tex b/library/set/regularity.tex
new file mode 100644
index 0000000..794d34f
--- /dev/null
+++ b/library/set/regularity.tex
@@ -0,0 +1,70 @@
+\import{set.tex}
+
+\section{Regularity}
+
+\begin{abbreviation}\label{elemminimal}
+ $a$ is an \in-minimal element of $A$ iff
+ $a\in A$ and $a\notmeets A$.
+\end{abbreviation}
+
+% We need to first state regularity in this slightly weirder form,
+% so that we can do \in-induction.
+\begin{lemma}%
+\label{regularity_aux}
+ For all $a, A$ such that $a\in A$
+ there exists $b\in A$ such that
+ $b\notmeets A$.
+\end{lemma}
+\begin{proof}[Proof by \in-induction on $a$]
+ \begin{byCase}
+ \caseOf{$a\notmeets b$.}
+ Straightforward.
+ \caseOf{$a\meets b$.}
+ Take $a'$ such that $a'\in a, b$.
+ Straightforward. % we apply the induction hypothesis to a'
+ \end{byCase}
+\end{proof}
+
+\begin{proposition}[Regularity]%
+\label{regularity}
+ Let $A$ be an inhabited set.
+ Then there exists a \in-minimal element of $A$.
+\end{proposition}
+\begin{proof}
+ Follows by \cref{regularity_aux,inhabited}.
+\end{proof}
+
+
+% Isabelle/ZF-style foundation for case analysis
+\begin{theorem}[Foundation]\label{foundation}
+ Let $A$ be a set.
+ Then $A = \emptyset$ or there exists $a\in A$
+ such that for all $x\in a$ we have $x\notin A$.
+\end{theorem}
+\begin{proof}
+ \begin{byCase}
+ \caseOf{$A = \emptyset$.}
+ Straightforward.
+ \caseOf{$A$ is inhabited.}
+ Take $a$ such that $a$ is a \in-minimal element of $A$.
+ Then for all $x\in a$ we have $x\notin A$.
+ \end{byCase}
+\end{proof}.
+
+\begin{proposition}\label{in_irrefl}
+ For all sets $A$ we have $A\not\in A$.
+\end{proposition}
+\begin{proof}[Proof by \in-induction]
+ Straightforward.
+\end{proof}
+
+\begin{proposition}\label{in_implies_neq}
+ If $a\in A$, then $a\neq A$.
+\end{proposition}
+
+\begin{proposition}\label{in_asymmetric}
+ For all sets $a, b$ such that $a\in b$ we have $b\notin a$.
+\end{proposition}
+\begin{proof}[Proof by \in-induction on $a$]
+ Straightforward.
+\end{proof}