diff options
Diffstat (limited to 'library/set/regularity.tex')
| -rw-r--r-- | library/set/regularity.tex | 70 |
1 files changed, 70 insertions, 0 deletions
diff --git a/library/set/regularity.tex b/library/set/regularity.tex new file mode 100644 index 0000000..794d34f --- /dev/null +++ b/library/set/regularity.tex @@ -0,0 +1,70 @@ +\import{set.tex} + +\section{Regularity} + +\begin{abbreviation}\label{elemminimal} + $a$ is an \in-minimal element of $A$ iff + $a\in A$ and $a\notmeets A$. +\end{abbreviation} + +% We need to first state regularity in this slightly weirder form, +% so that we can do \in-induction. +\begin{lemma}% +\label{regularity_aux} + For all $a, A$ such that $a\in A$ + there exists $b\in A$ such that + $b\notmeets A$. +\end{lemma} +\begin{proof}[Proof by \in-induction on $a$] + \begin{byCase} + \caseOf{$a\notmeets b$.} + Straightforward. + \caseOf{$a\meets b$.} + Take $a'$ such that $a'\in a, b$. + Straightforward. % we apply the induction hypothesis to a' + \end{byCase} +\end{proof} + +\begin{proposition}[Regularity]% +\label{regularity} + Let $A$ be an inhabited set. + Then there exists a \in-minimal element of $A$. +\end{proposition} +\begin{proof} + Follows by \cref{regularity_aux,inhabited}. +\end{proof} + + +% Isabelle/ZF-style foundation for case analysis +\begin{theorem}[Foundation]\label{foundation} + Let $A$ be a set. + Then $A = \emptyset$ or there exists $a\in A$ + such that for all $x\in a$ we have $x\notin A$. +\end{theorem} +\begin{proof} + \begin{byCase} + \caseOf{$A = \emptyset$.} + Straightforward. + \caseOf{$A$ is inhabited.} + Take $a$ such that $a$ is a \in-minimal element of $A$. + Then for all $x\in a$ we have $x\notin A$. + \end{byCase} +\end{proof}. + +\begin{proposition}\label{in_irrefl} + For all sets $A$ we have $A\not\in A$. +\end{proposition} +\begin{proof}[Proof by \in-induction] + Straightforward. +\end{proof} + +\begin{proposition}\label{in_implies_neq} + If $a\in A$, then $a\neq A$. +\end{proposition} + +\begin{proposition}\label{in_asymmetric} + For all sets $a, b$ such that $a\in b$ we have $b\notin a$. +\end{proposition} +\begin{proof}[Proof by \in-induction on $a$] + Straightforward. +\end{proof} |
