summaryrefslogtreecommitdiff
path: root/library/test.tex
diff options
context:
space:
mode:
Diffstat (limited to 'library/test.tex')
-rw-r--r--library/test.tex54
1 files changed, 0 insertions, 54 deletions
diff --git a/library/test.tex b/library/test.tex
deleted file mode 100644
index d30bbba..0000000
--- a/library/test.tex
+++ /dev/null
@@ -1,54 +0,0 @@
-\import{algebra/semigroup.tex}
-\section{monoid}
-
-\begin{struct}\label{monoid}
- A monoid $A$ is a semigroup equipped with
- \begin{enumerate}
- \item $\neutral$
- \end{enumerate}
- such that
- \begin{enumerate} %muss hier ein enumerate hin
- \item\label{monoid_type} $\neutral[A]\in \carrier[A]$.
- \item\label{monoid_right} for all $a\in \carrier[A]$ we have $\mul[A](a,\neutral[A]) = a$.
- \item\label{monoid_left} for all $a\in \carrier[A]$ we have $\mul[A](\neutral[A], a) = a$.
- \end{enumerate}
-\end{struct}
-
-
-\section{Group}
-
-\begin{struct}\label{group}
- A group $A$ is a monoid such that
- \begin{enumerate}
- \item\label{group_inverse} for all $a \in \carrier[A]$ there exist $b \in \carrier[A]$ such that $\mul[A](a, b) =\neutral[A]$.
- \end{enumerate}
-\end{struct}
-
-\begin{abbreviation}\label{cfourdot}
- $a\cdot b = \mul(a,b)$.
-\end{abbreviation}
-
-\begin{lemma}\label{neutral_is_idempotent}
- Let $G$ be a group. $\neutral[G]$ is a idempotent element of $G$.
-\end{lemma}
-
-\begin{proposition}\label{leftinverse_eq_rightinverse}
- Let $G$ be a group and assume $a \in G$.
- Then there exist $b\in G$
- such that $a \cdot b = \neutral[G]$ and $b \cdot a = \neutral[G]$.
-\end{proposition}
-\begin{proof}
- There exist $b \in G$ such that $a \cdot b = \neutral[G]$.
- There exist $c \in G$ such that $b \cdot c = \neutral[G]$.
- $a \cdot b = \neutral[G]$.
- $(a \cdot b) \cdot c = (\neutral[G]) \cdot c$.
- $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.
- $a \cdot \neutral[G] = \neutral[G] \cdot c$.
- $c = c \cdot \neutral[G]$.
- $c = \neutral[G] \cdot c$.
- $a \cdot \neutral[G] = c \cdot \neutral[G]$.
- $a \cdot \neutral[G] = c$ by \cref{monoid_right}.
- $a = c$ by \cref{monoid_right}.
- $b \cdot a = b \cdot c$.
- $b \cdot a = \neutral[G]$.
-\end{proof} \ No newline at end of file