summaryrefslogtreecommitdiff
path: root/library/test.tex
blob: d30bbba2e355b201241e5cfa38330dd96b8d63c1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
\import{algebra/semigroup.tex}
\section{monoid}

\begin{struct}\label{monoid}
    A monoid $A$ is a semigroup equipped with
    \begin{enumerate}
        \item $\neutral$
    \end{enumerate}
    such that
    \begin{enumerate} %muss hier ein enumerate hin
        \item\label{monoid_type} $\neutral[A]\in \carrier[A]$.
        \item\label{monoid_right} for all $a\in \carrier[A]$ we have $\mul[A](a,\neutral[A]) = a$.
        \item\label{monoid_left} for all $a\in \carrier[A]$ we have $\mul[A](\neutral[A], a) = a$.
    \end{enumerate}
\end{struct}


\section{Group}

\begin{struct}\label{group}
    A group $A$ is a monoid such that
    \begin{enumerate}
        \item\label{group_inverse} for all $a \in \carrier[A]$ there exist $b \in \carrier[A]$ such that $\mul[A](a, b) =\neutral[A]$.
    \end{enumerate} 
\end{struct}    

\begin{abbreviation}\label{cfourdot}
    $a\cdot b = \mul(a,b)$.
\end{abbreviation}

\begin{lemma}\label{neutral_is_idempotent}
    Let $G$ be a group. $\neutral[G]$ is a idempotent element of $G$.
\end{lemma}

\begin{proposition}\label{leftinverse_eq_rightinverse}
    Let $G$ be a group and assume $a \in G$.
    Then there exist $b\in G$ 
    such that $a \cdot b = \neutral[G]$ and $b \cdot a = \neutral[G]$.
\end{proposition}
\begin{proof}
    There exist $b \in G$ such that $a \cdot b = \neutral[G]$.
    There exist $c \in G$ such that $b \cdot c = \neutral[G]$.
    $a \cdot b = \neutral[G]$.
    $(a \cdot b) \cdot c = (\neutral[G]) \cdot c$.
    $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.
    $a \cdot \neutral[G] = \neutral[G] \cdot c$.
    $c = c \cdot \neutral[G]$.
    $c = \neutral[G] \cdot c$.
    $a \cdot \neutral[G] = c \cdot \neutral[G]$.
    $a \cdot \neutral[G] = c$ by \cref{monoid_right}.
    $a = c$ by \cref{monoid_right}.
    $b \cdot a = b \cdot c$.
    $b \cdot a = \neutral[G]$.
\end{proof}