blob: d30bbba2e355b201241e5cfa38330dd96b8d63c1 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
|
\import{algebra/semigroup.tex}
\section{monoid}
\begin{struct}\label{monoid}
A monoid $A$ is a semigroup equipped with
\begin{enumerate}
\item $\neutral$
\end{enumerate}
such that
\begin{enumerate} %muss hier ein enumerate hin
\item\label{monoid_type} $\neutral[A]\in \carrier[A]$.
\item\label{monoid_right} for all $a\in \carrier[A]$ we have $\mul[A](a,\neutral[A]) = a$.
\item\label{monoid_left} for all $a\in \carrier[A]$ we have $\mul[A](\neutral[A], a) = a$.
\end{enumerate}
\end{struct}
\section{Group}
\begin{struct}\label{group}
A group $A$ is a monoid such that
\begin{enumerate}
\item\label{group_inverse} for all $a \in \carrier[A]$ there exist $b \in \carrier[A]$ such that $\mul[A](a, b) =\neutral[A]$.
\end{enumerate}
\end{struct}
\begin{abbreviation}\label{cfourdot}
$a\cdot b = \mul(a,b)$.
\end{abbreviation}
\begin{lemma}\label{neutral_is_idempotent}
Let $G$ be a group. $\neutral[G]$ is a idempotent element of $G$.
\end{lemma}
\begin{proposition}\label{leftinverse_eq_rightinverse}
Let $G$ be a group and assume $a \in G$.
Then there exist $b\in G$
such that $a \cdot b = \neutral[G]$ and $b \cdot a = \neutral[G]$.
\end{proposition}
\begin{proof}
There exist $b \in G$ such that $a \cdot b = \neutral[G]$.
There exist $c \in G$ such that $b \cdot c = \neutral[G]$.
$a \cdot b = \neutral[G]$.
$(a \cdot b) \cdot c = (\neutral[G]) \cdot c$.
$(a \cdot b) \cdot c = a \cdot (b \cdot c)$.
$a \cdot \neutral[G] = \neutral[G] \cdot c$.
$c = c \cdot \neutral[G]$.
$c = \neutral[G] \cdot c$.
$a \cdot \neutral[G] = c \cdot \neutral[G]$.
$a \cdot \neutral[G] = c$ by \cref{monoid_right}.
$a = c$ by \cref{monoid_right}.
$b \cdot a = b \cdot c$.
$b \cdot a = \neutral[G]$.
\end{proof}
|