diff options
Diffstat (limited to 'library/topology/basis.tex')
| -rw-r--r-- | library/topology/basis.tex | 45 |
1 files changed, 45 insertions, 0 deletions
diff --git a/library/topology/basis.tex b/library/topology/basis.tex new file mode 100644 index 0000000..dda187c --- /dev/null +++ b/library/topology/basis.tex @@ -0,0 +1,45 @@ +\import{topology/topological-space.tex} + +\subsection{Topological basis} + +\begin{abbreviation}\label{covers} + $C$ covers $X$ iff + for all $x\in X$ there exists $U\in C$ such that $x\in U$. +\end{abbreviation} + +\begin{proposition}\label{covers_unions_intro} + Suppose $C$ covers $X$. + Then $X\subseteq\unions{C}$. +\end{proposition} + +\begin{proposition}\label{covers_unions_elim} + Suppose $X\subseteq\unions{C}$. + Then $C$ covers $X$. +\end{proposition} + +% Also called "prebase", "subbasis", or "subbase". We prefer "pre-" or "quasi-" +% for consistency when handling generalizations, even if "subbasis" is more common. +\begin{abbreviation}\label{topological_prebasis} + $B$ is a topological prebasis for $X$ iff $\unions{B} = X$. +\end{abbreviation} + +\begin{proposition}\label{topological_prebasis_iff_covering_family} + $B$ is a topological prebasis for $X$ iff + $B$ is a family of subsets of $X$ and $B$ covers $X$. +\end{proposition} +\begin{proof} + If $B$ is a family of subsets of $X$ and $B$ covers $X$, + then $\unions{B} = X$ + by \cref{subseteq_antisymmetric,unions_family,covers_unions_intro}. + If $\unions{B} = X$, + then $B$ is a family of subsets of $X$ and $B$ covers $X$ + by \cref{covers_unions_intro,subseteq_refl,covers_unions_elim}. +\end{proof} + +% Also called "base of topology". +\begin{definition}\label{topological_basis} + $B$ is a topological basis for $X$ iff + $B$ is a topological prebasis for $X$ and + for all $U, V, x$ such that $U, V\in B$ and $x\in U,V$ + there exists $W\in B$ such that $x\in W\subseteq U, V$. +\end{definition} |
