summaryrefslogtreecommitdiff
path: root/library/topology/basis.tex
diff options
context:
space:
mode:
Diffstat (limited to 'library/topology/basis.tex')
-rw-r--r--library/topology/basis.tex45
1 files changed, 45 insertions, 0 deletions
diff --git a/library/topology/basis.tex b/library/topology/basis.tex
new file mode 100644
index 0000000..dda187c
--- /dev/null
+++ b/library/topology/basis.tex
@@ -0,0 +1,45 @@
+\import{topology/topological-space.tex}
+
+\subsection{Topological basis}
+
+\begin{abbreviation}\label{covers}
+ $C$ covers $X$ iff
+ for all $x\in X$ there exists $U\in C$ such that $x\in U$.
+\end{abbreviation}
+
+\begin{proposition}\label{covers_unions_intro}
+ Suppose $C$ covers $X$.
+ Then $X\subseteq\unions{C}$.
+\end{proposition}
+
+\begin{proposition}\label{covers_unions_elim}
+ Suppose $X\subseteq\unions{C}$.
+ Then $C$ covers $X$.
+\end{proposition}
+
+% Also called "prebase", "subbasis", or "subbase". We prefer "pre-" or "quasi-"
+% for consistency when handling generalizations, even if "subbasis" is more common.
+\begin{abbreviation}\label{topological_prebasis}
+ $B$ is a topological prebasis for $X$ iff $\unions{B} = X$.
+\end{abbreviation}
+
+\begin{proposition}\label{topological_prebasis_iff_covering_family}
+ $B$ is a topological prebasis for $X$ iff
+ $B$ is a family of subsets of $X$ and $B$ covers $X$.
+\end{proposition}
+\begin{proof}
+ If $B$ is a family of subsets of $X$ and $B$ covers $X$,
+ then $\unions{B} = X$
+ by \cref{subseteq_antisymmetric,unions_family,covers_unions_intro}.
+ If $\unions{B} = X$,
+ then $B$ is a family of subsets of $X$ and $B$ covers $X$
+ by \cref{covers_unions_intro,subseteq_refl,covers_unions_elim}.
+\end{proof}
+
+% Also called "base of topology".
+\begin{definition}\label{topological_basis}
+ $B$ is a topological basis for $X$ iff
+ $B$ is a topological prebasis for $X$ and
+ for all $U, V, x$ such that $U, V\in B$ and $x\in U,V$
+ there exists $W\in B$ such that $x\in W\subseteq U, V$.
+\end{definition}