diff options
Diffstat (limited to 'library/topology/basis.tex')
| -rw-r--r-- | library/topology/basis.tex | 53 |
1 files changed, 39 insertions, 14 deletions
diff --git a/library/topology/basis.tex b/library/topology/basis.tex index 6fa9fbd..f0f77e4 100644 --- a/library/topology/basis.tex +++ b/library/topology/basis.tex @@ -2,7 +2,7 @@ \import{set.tex} \import{set/powerset.tex} -\subsection{Topological basis} +\subsection{Topological basis}\label{form_sec_topobasis} \begin{abbreviation}\label{covers} $C$ covers $X$ iff @@ -56,24 +56,52 @@ $\emptyset \in \genOpens{B}{X}$. \end{lemma} -\begin{lemma}\label{all_is_in_genopens} + + +\begin{lemma}\label{union_in_genopens} Assume $B$ is a topological basis for $X$. - $X \in \genOpens{B}{X}$. + Assume $F\subseteq \genOpens{B}{X}$. + Then $\unions{F}\in\genOpens{B}{X}$. \end{lemma} \begin{proof} - $B$ covers $X$ by \cref{topological_prebasis_iff_covering_family,topological_basis}. - $\unions{B} \in \genOpens{B}{X}$. - $X \subseteq \unions{B}$. + We have $\unions{F} \in \pow{X}$ by \cref{genopens,subseteq,pow_iff,unions_family,powerset_elim}. + + Show for all $x\in \unions{F}$ there exists $W \in B$ + such that $x\in W$ and $W \subseteq \unions{F}$. + \begin{subproof} + Fix $x \in \unions{F}$. + There exists $V \in F$ such that $x \in V$ by \cref{unions_iff}. + $V \in \genOpens{B}{X}$. + There exists $W \in B$ such that $x \in W \subseteq V$. + Then $W \subseteq \unions{F}$. + \end{subproof} + Then $\unions{F}\in\genOpens{B}{X}$ by \cref{genopens}. \end{proof} -\begin{lemma}\label{union_in_genopens} +\begin{lemma}\label{basis_is_in_genopens} Assume $B$ is a topological basis for $X$. - For all $F\subseteq \genOpens{B}{X}$ we have $\unions{F}\in\genOpens{B}{X}$. + $B \subseteq \genOpens{B}{X}$. \end{lemma} \begin{proof} - Omitted. + We show for all $V \in B$ $V \in \genOpens{B}{X}$. + \begin{subproof} + Fix $V \in B$. + For all $x \in V$ $x \in V \subseteq V$. + $V \subseteq X$ by \cref{topological_prebasis_iff_covering_family,topological_basis}. + $V \in \pow{X}$. + $V \in \genOpens{B}{X}$. + \end{subproof} \end{proof} +\begin{lemma}\label{all_is_in_genopens} + Assume $B$ is a topological basis for $X$. + $X \in \genOpens{B}{X}$. +\end{lemma} +\begin{proof} + $B$ covers $X$ by \cref{topological_prebasis_iff_covering_family,topological_basis}. + $\unions{B} \in \genOpens{B}{X}$. + $X \subseteq \unions{B}$. +\end{proof} \begin{lemma}\label{inters_in_genopens} Assume $B$ is a topological basis for $X$. @@ -92,16 +120,13 @@ Then $x\in A,C$. There exists $V' \in B$ such that $x \in V' \subseteq A$ by \cref{genopens}. There exists $V'' \in B$ such that $x \in V''\subseteq C$ by \cref{genopens}. - There exists $W \in B$ such that $x \in W$ and $W \subseteq V'$ and $W \subseteq V''$. + There exists $W \in B$ such that $x \in W$ and $W \subseteq V'$ and $W \subseteq V''$ by \cref{topological_basis}. Show $W \subseteq (A\inter C)$. \begin{subproof} - %$W \subseteq v'$ and $W \subseteq V''$. For all $y \in W$ we have $y \in V'$ and $y \in V''$. \end{subproof} \end{subproof} - %Therefore for all $A, C, x$ such that $A \in \genOpens{B}{X}$ and $C \in \genOpens{B}{X}$ and $x \in (A \inter C)$ we have there exists $W \in B$ - %such that $x\in W$ and $W \subseteq (A\inter C)$. - $(A\inter C) \in \genOpens{B}{X}$. + $(A\inter C) \in \genOpens{B}{X}$ by \cref{genopens}. \end{proof} |
