summaryrefslogtreecommitdiff
path: root/library/topology/disconnection.tex
diff options
context:
space:
mode:
Diffstat (limited to 'library/topology/disconnection.tex')
-rw-r--r--library/topology/disconnection.tex44
1 files changed, 44 insertions, 0 deletions
diff --git a/library/topology/disconnection.tex b/library/topology/disconnection.tex
new file mode 100644
index 0000000..e3730f3
--- /dev/null
+++ b/library/topology/disconnection.tex
@@ -0,0 +1,44 @@
+\import{set.tex}
+\import{set/bipartition.tex}
+\import{topology/topological-space.tex}
+
+\subsection{Disconnections}
+
+\begin{definition}\label{disconnections}
+ $\disconnections{X} = \{ p\in\bipartitions{\carrier[X]} \mid \text{$\fst{p},\snd{p}\in\opens[X]$} \}$.
+\end{definition}
+
+\begin{abbreviation}\label{is_a_disconnection}
+ $D$ is a disconnection of $X$ iff $D\in\disconnections{X}$.
+\end{abbreviation}
+
+\begin{definition}\label{disconnected}
+ $X$ is disconnected iff there exist $U, V\in\opens[X]$
+ such that $\carrier[X]$ is partitioned by $U$ and $V$.
+\end{definition}
+
+\begin{proposition}\label{disconnection_from_disconnected}
+ Let $X$ be a topological space.
+ Suppose $X$ is disconnected.
+ Then there exists a disconnection of $X$.
+\end{proposition}
+\begin{proof}
+ Take $U, V\in\opens[X]$ such that $\carrier[X]$ is partitioned by $U$ and $V$
+ by \cref{disconnected}.
+ Then $(U, V)$ is a bipartition of $\carrier[X]$.
+ Thus $(U, V)$ is a disconnection of $X$ by \cref{disconnections,times_proj_elim,times_tuple_intro}.
+\end{proof}
+
+\begin{proposition}\label{disconnected_from_disconnection}
+ Let $X$ be a topological space.
+ Let $D$ be a disconnection of $X$.
+ Then $X$ is disconnected.
+\end{proposition}
+\begin{proof}
+ $\fst{D}, \snd{D}\in\opens[X]$.
+ $\carrier[X]$ is partitioned by $\fst{D}$ and $\snd{D}$.
+\end{proof}
+
+\begin{abbreviation}\label{connected}
+ $X$ is connected iff $X$ is not disconnected.
+\end{abbreviation}