diff options
Diffstat (limited to 'library/topology/disconnection.tex')
| -rw-r--r-- | library/topology/disconnection.tex | 44 |
1 files changed, 44 insertions, 0 deletions
diff --git a/library/topology/disconnection.tex b/library/topology/disconnection.tex new file mode 100644 index 0000000..e3730f3 --- /dev/null +++ b/library/topology/disconnection.tex @@ -0,0 +1,44 @@ +\import{set.tex} +\import{set/bipartition.tex} +\import{topology/topological-space.tex} + +\subsection{Disconnections} + +\begin{definition}\label{disconnections} + $\disconnections{X} = \{ p\in\bipartitions{\carrier[X]} \mid \text{$\fst{p},\snd{p}\in\opens[X]$} \}$. +\end{definition} + +\begin{abbreviation}\label{is_a_disconnection} + $D$ is a disconnection of $X$ iff $D\in\disconnections{X}$. +\end{abbreviation} + +\begin{definition}\label{disconnected} + $X$ is disconnected iff there exist $U, V\in\opens[X]$ + such that $\carrier[X]$ is partitioned by $U$ and $V$. +\end{definition} + +\begin{proposition}\label{disconnection_from_disconnected} + Let $X$ be a topological space. + Suppose $X$ is disconnected. + Then there exists a disconnection of $X$. +\end{proposition} +\begin{proof} + Take $U, V\in\opens[X]$ such that $\carrier[X]$ is partitioned by $U$ and $V$ + by \cref{disconnected}. + Then $(U, V)$ is a bipartition of $\carrier[X]$. + Thus $(U, V)$ is a disconnection of $X$ by \cref{disconnections,times_proj_elim,times_tuple_intro}. +\end{proof} + +\begin{proposition}\label{disconnected_from_disconnection} + Let $X$ be a topological space. + Let $D$ be a disconnection of $X$. + Then $X$ is disconnected. +\end{proposition} +\begin{proof} + $\fst{D}, \snd{D}\in\opens[X]$. + $\carrier[X]$ is partitioned by $\fst{D}$ and $\snd{D}$. +\end{proof} + +\begin{abbreviation}\label{connected} + $X$ is connected iff $X$ is not disconnected. +\end{abbreviation} |
