diff options
Diffstat (limited to 'library/topology/real-topological-space.tex')
| -rw-r--r-- | library/topology/real-topological-space.tex | 143 |
1 files changed, 141 insertions, 2 deletions
diff --git a/library/topology/real-topological-space.tex b/library/topology/real-topological-space.tex index db46732..8757ffb 100644 --- a/library/topology/real-topological-space.tex +++ b/library/topology/real-topological-space.tex @@ -21,6 +21,123 @@ $\carrier[\reals] = \reals$. \end{axiom} +\begin{lemma}\label{intervals_are_connected_in_reals} + Suppose $a,b \in \reals$. + Then for all $c \in \reals$ such that $a < c < b$ we have $c \in \intervalopen{a}{b}$. +\end{lemma} + +\begin{lemma}\label{epsball_are_subset_reals_elem} + Suppose $x \in \reals$. + Suppose $\epsilon \in \realsplus$. + Then for all $y \in \epsBall{x}{\epsilon}$ we have $y \in \reals$. +\end{lemma} + +\begin{lemma}\label{intervalopen_iff} + Suppose $a,b,c \in \reals$. + Suppose $a < b$. + $c \in \intervalopen{a}{b}$ iff $a < c < b$. +\end{lemma} + +\begin{lemma}\label{epsball_are_subseteq_reals_set} + Suppose $x \in \reals$. + Suppose $\epsilon \in \realsplus$. + Then $\epsBall{x}{\epsilon} \subseteq \reals$. +\end{lemma} + +\begin{lemma}\label{epsball_are_subset_reals_set} + Suppose $x \in \reals$. + Suppose $\epsilon \in \realsplus$. + Then $\epsBall{x}{\epsilon} \subset \reals$. +\end{lemma} + +\begin{lemma}\label{reals_order_minus_positiv} + Suppose $x,y \in \reals$. + Suppose $\zero < y$. + $x - y < x$. +\end{lemma} + +\begin{lemma}\label{realsplus_bigger_zero} + For all $x \in \realsplus$ we have $\zero < x$. +\end{lemma} + +\begin{lemma}\label{realsplus_in_reals} + For all $x \in \realsplus$ we have $x \in \reals$. +\end{lemma} + +\begin{lemma}\label{epsball_are_inhabited} + Suppose $x \in \reals$. + Suppose $\epsilon \in \realsplus$. + Then $\epsBall{x}{\epsilon}$ is inhabited. +\end{lemma} +\begin{proof} + $x < x + \epsilon$. + $x - \epsilon < x$. + $x \in \epsBall{x}{\epsilon}$. +\end{proof} + +\begin{lemma}\label{reals_elem_inbetween} + For all $a,b \in \reals$ such that $a < b$ we have there exists $c \in \reals$ such that $a < c < b$. +\end{lemma} + +\begin{lemma}\label{epsball_equal_openinterval} + Suppose $x \in \reals$. + Suppose $\epsilon \in \realsplus$. + Then $\epsBall{x}{\epsilon} = \intervalopen{x - \epsilon}{x + \epsilon}$. +\end{lemma} + +\begin{lemma}\label{minus_behavior1} + For all $x \in \reals$ we have $x - x = \zero$. +\end{lemma} + +\begin{lemma}\label{minus_behavior2} + For all $x \in \reals$ we have $x + \neg{x} = \zero$. +\end{lemma} + +\begin{lemma}\label{minus_behavior3} + For all $x \in \reals$ we have $\neg{x} = \zero - x$. +\end{lemma} + +\begin{lemma}\label{reals_order_is_addition_with_positiv_number} + For all $x,y \in \reals$ such that $x < y$ we have there exists $z \in \realsplus$ such that $x + z = y$. +\end{lemma} +\begin{proof} + %Fix $x,y \in \reals$. +\end{proof} + +\begin{lemma}\label{reals_order_is_transitive} + For all $x,y,z \in \reals$ such that $x < y$ and $y < z$ we have $x < z$. +\end{lemma} + +\begin{lemma}\label{reals_order_plus_minus} + Suppose $a,b \in \reals$. + Suppose $\zero < b$. + Then $(a-b) < (a+b)$. +\end{lemma} +\begin{proof} + We show that $a < (a+b)$. + \begin{subproof} + Trivial. + \end{subproof} + We show that $(a-b) < a$. + \begin{subproof} + Trivial. + \end{subproof} +\end{proof} + +\begin{lemma}\label{epsball_are_connected_in_reals} + Suppose $x \in \reals$. + Suppose $\epsilon \in \realsplus$. + Then for all $c \in \reals$ such that $(x - \epsilon) < c < (x + \epsilon)$ we have $c \in \epsBall{x}{\epsilon}$. +\end{lemma} +\begin{proof} + $x - \epsilon \in \reals$. + $x + \epsilon \in \reals$. + + It suffices to show that for all $c$ such that $c \in \reals \land (x - \epsilon) < c < (x + \epsilon)$ we have $c \in \epsBall{x}{\epsilon}$. + %Fix $c$ such that $c \in \reals \land (x - \epsilon) < c < (x + \epsilon)$. + %Suppose $(x - \epsilon) < c < (x + \epsilon)$. +\end{proof} + \begin{theorem}\label{topological_basis_reals_is_prebasis} $\topoBasisReals$ is a topological prebasis for $\reals$. \end{theorem} @@ -29,11 +146,21 @@ \begin{subproof} It suffices to show that for all $x \in \unions{\topoBasisReals}$ we have $x \in \reals$. Fix $x \in \unions{\topoBasisReals}$. + \begin{byCase} + \caseOf{$x = \emptyset$.} + Trivial. + \caseOf{$x \neq \emptyset$.} + There exists $U \in \topoBasisReals$ such that $x \in \topoBasisReals$. + Take $U \in \topoBasisReals$ such that $x \in \topoBasisReals$. + + \end{byCase} \end{subproof} We show that $\reals \subseteq \unions{\topoBasisReals}$. \begin{subproof} It suffices to show that for all $x \in \reals$ we have $x \in \unions{\topoBasisReals}$. Fix $x \in \reals$. + $\epsBall{x}{1} \in \topoBasisReals$. + Therefore $x \in \unions{\topoBasisReals}$. \end{subproof} \end{proof} @@ -46,7 +173,15 @@ It suffices to show that for all $U \in B$ we have for all $V \in B$ we have for all $x$ such that $x \in U, V$ there exists $W\in B$ such that $x\in W\subseteq U, V$. Fix $U \in B$. Fix $V \in B$. - Fix $x \in U, V$. + It suffices to show that for all $x \in U \inter V$ there exists $W\in B$ such that $x\in W\subseteq U, V$. + Fix $x \in U \inter V$. + \begin{byCase} + \caseOf{$U \inter V = \emptyset$.} + Trivial. + \caseOf{$U \inter V \neq \emptyset$.} + Then $U \inter V$ is inhabited. + %It suffices to show that + \end{byCase} \end{proof} \begin{axiom}\label{topological_space_reals} @@ -86,4 +221,8 @@ \begin{proposition}\label{open_interval_is_open} Suppose $a,b \in \reals$. Then $\intervalopen{a}{b} \in \opens[\reals]$. -\end{proposition}
\ No newline at end of file +\end{proposition} + +\begin{lemma}\label{safetwo} + Contradiction. +\end{lemma}
\ No newline at end of file |
