1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
|
\import{set.tex}
\import{set/cons.tex}
\import{set/powerset.tex}
\import{set/fixpoint.tex}
\import{set/product.tex}
\import{topology/topological-space.tex}
\import{topology/separation.tex}
\import{topology/continuous.tex}
\import{topology/basis.tex}
\import{numbers.tex}
\import{function.tex}
\section{The canonical topology on $\mathbbR$}
\begin{definition}\label{topological_basis_reals_eps_ball}
$\topoBasisReals = \{ \epsBall{x}{\epsilon} \mid x \in \reals, \epsilon \in \realsplus\}$.
\end{definition}
\begin{axiom}\label{reals_carrier_reals}
$\carrier[\reals] = \reals$.
\end{axiom}
\begin{lemma}\label{intervals_are_connected_in_reals}
Suppose $a,b \in \reals$.
Then for all $c \in \reals$ such that $a < c < b$ we have $c \in \intervalopen{a}{b}$.
\end{lemma}
\begin{lemma}\label{epsball_are_subset_reals_elem}
Suppose $x \in \reals$.
Suppose $\epsilon \in \realsplus$.
Then for all $y \in \epsBall{x}{\epsilon}$ we have $y \in \reals$.
\end{lemma}
\begin{lemma}\label{intervalopen_iff}
Suppose $a,b,c \in \reals$.
Suppose $a < b$.
$c \in \intervalopen{a}{b}$ iff $a < c < b$.
\end{lemma}
\begin{lemma}\label{epsball_are_subseteq_reals_set}
Suppose $x \in \reals$.
Suppose $\epsilon \in \realsplus$.
Then $\epsBall{x}{\epsilon} \subseteq \reals$.
\end{lemma}
\begin{lemma}\label{epsball_are_subset_reals_set}
Suppose $x \in \reals$.
Suppose $\epsilon \in \realsplus$.
Then $\epsBall{x}{\epsilon} \subset \reals$.
\end{lemma}
\begin{lemma}\label{reals_order_minus_positiv}
Suppose $x,y \in \reals$.
Suppose $\zero < y$.
$x - y < x$.
\end{lemma}
\begin{lemma}\label{realsplus_bigger_zero}
For all $x \in \realsplus$ we have $\zero < x$.
\end{lemma}
\begin{lemma}\label{realsplus_in_reals}
For all $x \in \realsplus$ we have $x \in \reals$.
\end{lemma}
\begin{lemma}\label{epsball_are_inhabited}
Suppose $x \in \reals$.
Suppose $\epsilon \in \realsplus$.
Then $\epsBall{x}{\epsilon}$ is inhabited.
\end{lemma}
\begin{proof}
$x < x + \epsilon$.
$x - \epsilon < x$.
$x \in \epsBall{x}{\epsilon}$.
\end{proof}
\begin{lemma}\label{reals_elem_inbetween}
For all $a,b \in \reals$ such that $a < b$ we have there exists $c \in \reals$ such that $a < c < b$.
\end{lemma}
\begin{lemma}\label{epsball_equal_openinterval}
Suppose $x \in \reals$.
Suppose $\epsilon \in \realsplus$.
Then $\epsBall{x}{\epsilon} = \intervalopen{x - \epsilon}{x + \epsilon}$.
\end{lemma}
\begin{lemma}\label{minus_behavior1}
For all $x \in \reals$ we have $x - x = \zero$.
\end{lemma}
\begin{lemma}\label{minus_behavior2}
For all $x \in \reals$ we have $x + \neg{x} = \zero$.
\end{lemma}
\begin{lemma}\label{minus_behavior3}
For all $x \in \reals$ we have $\neg{x} = \zero - x$.
\end{lemma}
\begin{lemma}\label{reals_order_is_addition_with_positiv_number}
For all $x,y \in \reals$ such that $x < y$ we have there exists $z \in \realsplus$ such that $x + z = y$.
\end{lemma}
\begin{proof}
%Fix $x,y \in \reals$.
\end{proof}
\begin{lemma}\label{reals_order_is_transitive}
For all $x,y,z \in \reals$ such that $x < y$ and $y < z$ we have $x < z$.
\end{lemma}
\begin{lemma}\label{reals_order_plus_minus}
Suppose $a,b \in \reals$.
Suppose $\zero < b$.
Then $(a-b) < (a+b)$.
\end{lemma}
\begin{proof}
We show that $a < (a+b)$.
\begin{subproof}
Trivial.
\end{subproof}
We show that $(a-b) < a$.
\begin{subproof}
Trivial.
\end{subproof}
\end{proof}
\begin{lemma}\label{epsball_are_connected_in_reals}
Suppose $x \in \reals$.
Suppose $\epsilon \in \realsplus$.
Then for all $c \in \reals$ such that $(x - \epsilon) < c < (x + \epsilon)$ we have $c \in \epsBall{x}{\epsilon}$.
\end{lemma}
\begin{proof}
$x - \epsilon \in \reals$.
$x + \epsilon \in \reals$.
It suffices to show that for all $c$ such that $c \in \reals \land (x - \epsilon) < c < (x + \epsilon)$ we have $c \in \epsBall{x}{\epsilon}$.
%Fix $c$ such that $c \in \reals \land (x - \epsilon) < c < (x + \epsilon)$.
%Suppose $(x - \epsilon) < c < (x + \epsilon)$.
\end{proof}
\begin{theorem}\label{topological_basis_reals_is_prebasis}
$\topoBasisReals$ is a topological prebasis for $\reals$.
\end{theorem}
\begin{proof}
We show that $\unions{\topoBasisReals} \subseteq \reals$.
\begin{subproof}
It suffices to show that for all $x \in \unions{\topoBasisReals}$ we have $x \in \reals$.
Fix $x \in \unions{\topoBasisReals}$.
\begin{byCase}
\caseOf{$x = \emptyset$.}
Trivial.
\caseOf{$x \neq \emptyset$.}
There exists $U \in \topoBasisReals$ such that $x \in \topoBasisReals$.
Take $U \in \topoBasisReals$ such that $x \in \topoBasisReals$.
\end{byCase}
\end{subproof}
We show that $\reals \subseteq \unions{\topoBasisReals}$.
\begin{subproof}
It suffices to show that for all $x \in \reals$ we have $x \in \unions{\topoBasisReals}$.
Fix $x \in \reals$.
$\epsBall{x}{1} \in \topoBasisReals$.
Therefore $x \in \unions{\topoBasisReals}$.
\end{subproof}
\end{proof}
\begin{theorem}\label{topological_basis_reals_is_basis}
$\topoBasisReals$ is a topological basis for $\reals$.
\end{theorem}
\begin{proof}
$\topoBasisReals$ is a topological prebasis for $\reals$ by \cref{topological_basis_reals_is_prebasis}.
Let $B = \topoBasisReals$.
It suffices to show that for all $U \in B$ we have for all $V \in B$ we have for all $x$ such that $x \in U, V$ there exists $W\in B$ such that $x\in W\subseteq U, V$.
Fix $U \in B$.
Fix $V \in B$.
It suffices to show that for all $x \in U \inter V$ there exists $W\in B$ such that $x\in W\subseteq U, V$.
Fix $x \in U \inter V$.
\begin{byCase}
\caseOf{$U \inter V = \emptyset$.}
Trivial.
\caseOf{$U \inter V \neq \emptyset$.}
Then $U \inter V$ is inhabited.
%It suffices to show that
\end{byCase}
\end{proof}
\begin{axiom}\label{topological_space_reals}
$\opens[\reals] = \genOpens{\topoBasisReals}{\reals}$.
\end{axiom}
\begin{theorem}\label{reals_is_topological_space}
$\reals$ is a topological space.
\end{theorem}
\begin{proof}
$\topoBasisReals$ is a topological basis for $\reals$.
Let $B = \topoBasisReals$.
We show that $\opens[\reals]$ is a family of subsets of $\carrier[\reals]$.
\begin{subproof}
It suffices to show that for all $A \in \opens[\reals]$ we have $A \subseteq \reals$.
Fix $A \in \opens[\reals]$.
Follows by \cref{powerset_elim,topological_space_reals,genopens}.
\end{subproof}
We show that $\reals \in\opens[\reals]$.
\begin{subproof}
$B$ covers $\reals$ by \cref{topological_prebasis_iff_covering_family,topological_basis}.
$\unions{B} \in \genOpens{B}{\reals}$.
$\reals \subseteq \unions{B}$.
\end{subproof}
We show that for all $A, B\in \opens[\reals]$ we have $A\inter B\in\opens[\reals]$.
\begin{subproof}
Follows by \cref{topological_space_reals,inters_in_genopens}.
\end{subproof}
We show that for all $F\subseteq \opens[\reals]$ we have $\unions{F}\in\opens[\reals]$.
\begin{subproof}
Follows by \cref{topological_space_reals,union_in_genopens}.
\end{subproof}
$\carrier[\reals] = \reals$.
Follows by \cref{topological_space}.
\end{proof}
\begin{proposition}\label{open_interval_is_open}
Suppose $a,b \in \reals$.
Then $\intervalopen{a}{b} \in \opens[\reals]$.
\end{proposition}
\begin{lemma}\label{safetwo}
Contradiction.
\end{lemma}
|