summaryrefslogtreecommitdiff
path: root/library/topology/real-topological-space.tex
diff options
context:
space:
mode:
Diffstat (limited to 'library/topology/real-topological-space.tex')
-rw-r--r--library/topology/real-topological-space.tex121
1 files changed, 102 insertions, 19 deletions
diff --git a/library/topology/real-topological-space.tex b/library/topology/real-topological-space.tex
index 1c5e4cb..ffdf46e 100644
--- a/library/topology/real-topological-space.tex
+++ b/library/topology/real-topological-space.tex
@@ -11,7 +11,7 @@
\import{function.tex}
-\section{The canonical topology on $\mathbbR$}
+\section{The canonical topology on $\mathbb{R}$}
\begin{definition}\label{topological_basis_reals_eps_ball}
$\topoBasisReals = \{ \epsBall{x}{\epsilon} \mid x \in \reals, \epsilon \in \realsplus\}$.
@@ -101,12 +101,15 @@
For all $x,y \in \reals$ such that $x < y$ we have there exists $z \in \realsplus$ such that $x + z = y$.
\end{lemma}
\begin{proof}
- %Fix $x,y \in \reals$.
+ Omitted.
\end{proof}
\begin{lemma}\label{reals_order_is_transitive}
For all $x,y,z \in \reals$ such that $x < y$ and $y < z$ we have $x < z$.
\end{lemma}
+\begin{proof}
+ Omitted.
+\end{proof}
\begin{lemma}\label{reals_order_plus_minus}
Suppose $a,b \in \reals$.
@@ -134,16 +137,9 @@
$x + \epsilon \in \reals$.
- %It suffices to show that for all $c$ such that $c \rless x$ we have $c \in \epsBall{x}{\epsilon}$.
- %Fix $c$ such that $c \rless x$.
-%
- %It suffices to show that for all $c$ such that $c < x$ we have $c \in \epsBall{x}{\epsilon}$.
- %Fix $c$ such that $c < x$.
-
-
It suffices to show that for all $c$ such that $c \in \reals \land (x - \epsilon) \rless c \rless (x + \epsilon)$ we have $c \in \epsBall{x}{\epsilon}$.
Fix $c$ such that $(c \in \reals) \land (x - \epsilon) \rless c \rless (x + \epsilon)$.
- %Suppose $(x - \epsilon) < c < (x + \epsilon)$.
+ $(x - \epsilon) < c < (x + \epsilon)$.
\end{proof}
\begin{theorem}\label{topological_basis_reals_is_prebasis}
@@ -158,9 +154,9 @@
\caseOf{$x = \emptyset$.}
Trivial.
\caseOf{$x \neq \emptyset$.}
- There exists $U \in \topoBasisReals$ such that $x \in \topoBasisReals$.
- Take $U \in \topoBasisReals$ such that $x \in \topoBasisReals$.
-
+ %There exists $U \in \topoBasisReals$ such that $x \in U$.
+ Take $U \in \topoBasisReals$ such that $x \in U$.
+ Follows by \cref{epsball_are_subseteq_reals_set,topological_basis_reals_eps_ball,epsilon_ball,minus,subseteq}.
\end{byCase}
\end{subproof}
We show that $\reals \subseteq \unions{\topoBasisReals}$.
@@ -168,10 +164,63 @@
It suffices to show that for all $x \in \reals$ we have $x \in \unions{\topoBasisReals}$.
Fix $x \in \reals$.
$\epsBall{x}{1} \in \topoBasisReals$.
- Therefore $x \in \unions{\topoBasisReals}$.
+ Therefore $x \in \unions{\topoBasisReals}$ by \cref{one_in_reals,reals_one_bigger_zero,unions_intro,realsplus,plus_one_order,reals_order_minus_positiv,epsball_are_connected_in_reals}.
\end{subproof}
\end{proof}
+%\begin{lemma}\label{intervl_intersection_is_interval}
+% Suppose $a,b,a',b' \in \reals$.
+% Suppose there exist $x \in \reals$ such that $x \in \intervalopen{a}{b} \inter \intervalopen{a'}{b'}$.
+% Then there exists $q,p \in \reals$ such that $q < p$ and $\intervalopen{q}{p} \subseteq \intervalopen{a}{b} \inter \intervalopen{a'}{b'}$.
+%\end{lemma}
+%
+
+\begin{lemma}\label{reals_order_total}
+ For all $x,y \in \reals$ we have either $x < y$ or $x \geq y$.
+\end{lemma}
+\begin{proof}
+ It suffices to show that for all $x \in \reals$ we have for all $y \in \reals$ we have either $x < y$ or $x \geq y$.
+ Fix $x \in \reals$.
+ Fix $y \in \reals$.
+ Omitted.
+\end{proof}
+
+\begin{lemma}\label{topo_basis_reals_eps_iff}
+ $X \in \topoBasisReals$ iff there exists $x_0, \delta$ such that $x_0 \in \reals$ and $\delta \in \realsplus$ and $\epsBall{x_0}{\delta} = X$.
+\end{lemma}
+
+\begin{lemma}\label{topo_basis_reals_intro}
+For all $x,\delta$ such that $x \in \reals \land \delta \in \realsplus$ we have $\epsBall{x}{\delta} \in \topoBasisReals$.
+\end{lemma}
+
+\begin{lemma}\label{realspuls_in_reals_plus}
+ For all $x,y$ such that $x \in \reals$ and $y \in \realsplus$ we have $x + y \in \reals$.
+\end{lemma}
+
+\begin{lemma}\label{realspuls_in_reals_minus}
+ For all $x,y$ such that $x \in \reals$ and $y \in \realsplus$ we have $x - y \in \reals$.
+\end{lemma}
+
+\begin{lemma}\label{eps_ball_implies_open_interval}
+ Suppose $x \in \reals$.
+ Suppose $\epsilon \in \realsplus$.
+ Then there exists $a,b \in \reals$ such that $a < b$ and $\intervalopen{a}{b} = \epsBall{x}{\epsilon}$.
+\end{lemma}
+
+\begin{lemma}\label{open_interval_eq_eps_ball}
+ Suppose $a,b \in \reals$.
+ Suppose $a < b$.
+ Then there exist $x,\epsilon$ such that $x \in \reals$ and $\epsilon \in \realsplus$ and $\intervalopen{a}{b} = \epsBall{x}{\epsilon}$.
+\end{lemma}
+\begin{proof}
+ Let $\delta = (b-a)$.
+ $\delta$ is positiv by \cref{minus_}.
+ There exists $\epsilon \in \reals$ such that $\epsilon + \epsilon = \delta$.
+
+\end{proof}
+
+
+
\begin{theorem}\label{topological_basis_reals_is_basis}
$\topoBasisReals$ is a topological basis for $\reals$.
\end{theorem}
@@ -188,7 +237,45 @@
Trivial.
\caseOf{$U \inter V \neq \emptyset$.}
Then $U \inter V$ is inhabited.
- %It suffices to show that
+ $x \in \reals$ by \cref{inter_lower_left,subseteq,topological_prebasis_iff_covering_family,omega_is_an_ordinal,naturals_subseteq_reals,subset_transitive,suc_subseteq_elim,ordinal_suc_subseteq}.
+ There exists $x_1, \alpha$ such that $x_1 \in \reals$ and $\alpha \in \realsplus$ and $\epsBall{x_1}{\alpha} = U$.
+ There exists $x_2, \beta$ such that $x_2 \in \reals$ and $\beta \in \realsplus$ and $\epsBall{x_2}{\beta} = V$.
+ Then $ (x_1 - \alpha) < x < (x_1 + \alpha)$.
+ Then $ (x_2 - \beta) < x < (x_2 + \beta)$.
+ We show that if there exists $\delta \in \realsplus$ such that $\epsBall{x}{\delta} \subseteq U \inter V$ then there exists $W\in B$ such that $x\in W\subseteq U, V$.
+ \begin{subproof}
+ Suppose there exists $\delta \in \realsplus$ such that $\epsBall{x}{\delta} \subseteq U \inter V$.
+ $x \in \epsBall{x}{\delta}$.
+ $\epsBall{x}{\delta} \subseteq U$.
+ $\epsBall{x}{\delta} \subseteq V$.
+ $\epsBall{x}{\delta} \in B$.
+ \end{subproof}
+ It suffices to show that there exists $\delta \in \realsplus$ such that $\epsBall{x}{\delta} \subseteq U \inter V$.
+
+
+ %It suffices to show that there exists $x_0, \delta$ such that $x_0 \in \reals$ and $\delta \in \realsplus$ and $\epsBall{x_0}{\delta} \subseteq u \inter V$.
+ %There exists $x_1, \alpha$ such that $x_1 \in \reals$ and $\alpha \in \realsplus$ and $\epsBall{x_1}{\alpha} = U$.
+ %There exists $x_2, \beta$ such that $x_2 \in \reals$ and $\beta \in \realsplus$ and $\epsBall{x_2}{\beta} = V$.
+ %Then $ (x_1 - \alpha) < x < (x_1 + \alpha)$.
+ %Then $ (x_2 - \beta) < x < (x_2 + \beta)$.
+ %\begin{byCase}
+ % \caseOf{$x_1 = x_2$.}
+ % Take $\gamma \in \realsplus$ such that either $\gamma = \alpha \land \gamma \leq \beta$ or $\gamma \leq \alpha \land \gamma = \beta$.
+ % \caseOf{$x_1 < x_2$.}
+ % \caseOf{$x_1 > x_2$.}
+ %\end{byCase}
+ %%Take $m$ such that $m \in \min{\{(x_1 + \alpha), (x_2 + \beta)\}}$.
+ %Take $n$ such that $n \in \max{\{(x_1 - \alpha), (x_2 - \beta)\}}$.
+ %Then $m < x < n$.
+ %We show that there exists $x_1 \in \reals$ such that $x_1 \in U \inter V$ and $x_1 < x$.
+ %\begin{subproof}
+ % Suppose not.
+ % Then For all $y \in U \inter V$ we have $x \leq y$.
+ %\end{subproof}
+ %We show that there exists $x_2 \in \reals$ such that $x_2 \in U \inter V$ and $x_2 > x$.
+ %\begin{subproof}
+ % Trivial.
+ %\end{subproof}
\end{byCase}
\end{proof}
@@ -230,7 +317,3 @@
Suppose $a,b \in \reals$.
Then $\intervalopen{a}{b} \in \opens[\reals]$.
\end{proposition}
-
-\begin{lemma}\label{safetwo}
- Contradiction.
-\end{lemma} \ No newline at end of file