diff options
| author | Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> | 2024-09-16 11:34:01 +0200 |
|---|---|---|
| committer | Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> | 2024-09-16 11:34:01 +0200 |
| commit | 588c6ab14184cab4bb7df89def641acaafe3b7eb (patch) | |
| tree | da958f5a94676aa7ab557c1ee9b5c4fdc38ecf8a /library/topology/real-topological-space.tex | |
| parent | 640fe16eaab00ea29046ef18e6f751571d923eaa (diff) | |
working commit
Diffstat (limited to 'library/topology/real-topological-space.tex')
| -rw-r--r-- | library/topology/real-topological-space.tex | 121 |
1 files changed, 102 insertions, 19 deletions
diff --git a/library/topology/real-topological-space.tex b/library/topology/real-topological-space.tex index 1c5e4cb..ffdf46e 100644 --- a/library/topology/real-topological-space.tex +++ b/library/topology/real-topological-space.tex @@ -11,7 +11,7 @@ \import{function.tex} -\section{The canonical topology on $\mathbbR$} +\section{The canonical topology on $\mathbb{R}$} \begin{definition}\label{topological_basis_reals_eps_ball} $\topoBasisReals = \{ \epsBall{x}{\epsilon} \mid x \in \reals, \epsilon \in \realsplus\}$. @@ -101,12 +101,15 @@ For all $x,y \in \reals$ such that $x < y$ we have there exists $z \in \realsplus$ such that $x + z = y$. \end{lemma} \begin{proof} - %Fix $x,y \in \reals$. + Omitted. \end{proof} \begin{lemma}\label{reals_order_is_transitive} For all $x,y,z \in \reals$ such that $x < y$ and $y < z$ we have $x < z$. \end{lemma} +\begin{proof} + Omitted. +\end{proof} \begin{lemma}\label{reals_order_plus_minus} Suppose $a,b \in \reals$. @@ -134,16 +137,9 @@ $x + \epsilon \in \reals$. - %It suffices to show that for all $c$ such that $c \rless x$ we have $c \in \epsBall{x}{\epsilon}$. - %Fix $c$ such that $c \rless x$. -% - %It suffices to show that for all $c$ such that $c < x$ we have $c \in \epsBall{x}{\epsilon}$. - %Fix $c$ such that $c < x$. - - It suffices to show that for all $c$ such that $c \in \reals \land (x - \epsilon) \rless c \rless (x + \epsilon)$ we have $c \in \epsBall{x}{\epsilon}$. Fix $c$ such that $(c \in \reals) \land (x - \epsilon) \rless c \rless (x + \epsilon)$. - %Suppose $(x - \epsilon) < c < (x + \epsilon)$. + $(x - \epsilon) < c < (x + \epsilon)$. \end{proof} \begin{theorem}\label{topological_basis_reals_is_prebasis} @@ -158,9 +154,9 @@ \caseOf{$x = \emptyset$.} Trivial. \caseOf{$x \neq \emptyset$.} - There exists $U \in \topoBasisReals$ such that $x \in \topoBasisReals$. - Take $U \in \topoBasisReals$ such that $x \in \topoBasisReals$. - + %There exists $U \in \topoBasisReals$ such that $x \in U$. + Take $U \in \topoBasisReals$ such that $x \in U$. + Follows by \cref{epsball_are_subseteq_reals_set,topological_basis_reals_eps_ball,epsilon_ball,minus,subseteq}. \end{byCase} \end{subproof} We show that $\reals \subseteq \unions{\topoBasisReals}$. @@ -168,10 +164,63 @@ It suffices to show that for all $x \in \reals$ we have $x \in \unions{\topoBasisReals}$. Fix $x \in \reals$. $\epsBall{x}{1} \in \topoBasisReals$. - Therefore $x \in \unions{\topoBasisReals}$. + Therefore $x \in \unions{\topoBasisReals}$ by \cref{one_in_reals,reals_one_bigger_zero,unions_intro,realsplus,plus_one_order,reals_order_minus_positiv,epsball_are_connected_in_reals}. \end{subproof} \end{proof} +%\begin{lemma}\label{intervl_intersection_is_interval} +% Suppose $a,b,a',b' \in \reals$. +% Suppose there exist $x \in \reals$ such that $x \in \intervalopen{a}{b} \inter \intervalopen{a'}{b'}$. +% Then there exists $q,p \in \reals$ such that $q < p$ and $\intervalopen{q}{p} \subseteq \intervalopen{a}{b} \inter \intervalopen{a'}{b'}$. +%\end{lemma} +% + +\begin{lemma}\label{reals_order_total} + For all $x,y \in \reals$ we have either $x < y$ or $x \geq y$. +\end{lemma} +\begin{proof} + It suffices to show that for all $x \in \reals$ we have for all $y \in \reals$ we have either $x < y$ or $x \geq y$. + Fix $x \in \reals$. + Fix $y \in \reals$. + Omitted. +\end{proof} + +\begin{lemma}\label{topo_basis_reals_eps_iff} + $X \in \topoBasisReals$ iff there exists $x_0, \delta$ such that $x_0 \in \reals$ and $\delta \in \realsplus$ and $\epsBall{x_0}{\delta} = X$. +\end{lemma} + +\begin{lemma}\label{topo_basis_reals_intro} +For all $x,\delta$ such that $x \in \reals \land \delta \in \realsplus$ we have $\epsBall{x}{\delta} \in \topoBasisReals$. +\end{lemma} + +\begin{lemma}\label{realspuls_in_reals_plus} + For all $x,y$ such that $x \in \reals$ and $y \in \realsplus$ we have $x + y \in \reals$. +\end{lemma} + +\begin{lemma}\label{realspuls_in_reals_minus} + For all $x,y$ such that $x \in \reals$ and $y \in \realsplus$ we have $x - y \in \reals$. +\end{lemma} + +\begin{lemma}\label{eps_ball_implies_open_interval} + Suppose $x \in \reals$. + Suppose $\epsilon \in \realsplus$. + Then there exists $a,b \in \reals$ such that $a < b$ and $\intervalopen{a}{b} = \epsBall{x}{\epsilon}$. +\end{lemma} + +\begin{lemma}\label{open_interval_eq_eps_ball} + Suppose $a,b \in \reals$. + Suppose $a < b$. + Then there exist $x,\epsilon$ such that $x \in \reals$ and $\epsilon \in \realsplus$ and $\intervalopen{a}{b} = \epsBall{x}{\epsilon}$. +\end{lemma} +\begin{proof} + Let $\delta = (b-a)$. + $\delta$ is positiv by \cref{minus_}. + There exists $\epsilon \in \reals$ such that $\epsilon + \epsilon = \delta$. + +\end{proof} + + + \begin{theorem}\label{topological_basis_reals_is_basis} $\topoBasisReals$ is a topological basis for $\reals$. \end{theorem} @@ -188,7 +237,45 @@ Trivial. \caseOf{$U \inter V \neq \emptyset$.} Then $U \inter V$ is inhabited. - %It suffices to show that + $x \in \reals$ by \cref{inter_lower_left,subseteq,topological_prebasis_iff_covering_family,omega_is_an_ordinal,naturals_subseteq_reals,subset_transitive,suc_subseteq_elim,ordinal_suc_subseteq}. + There exists $x_1, \alpha$ such that $x_1 \in \reals$ and $\alpha \in \realsplus$ and $\epsBall{x_1}{\alpha} = U$. + There exists $x_2, \beta$ such that $x_2 \in \reals$ and $\beta \in \realsplus$ and $\epsBall{x_2}{\beta} = V$. + Then $ (x_1 - \alpha) < x < (x_1 + \alpha)$. + Then $ (x_2 - \beta) < x < (x_2 + \beta)$. + We show that if there exists $\delta \in \realsplus$ such that $\epsBall{x}{\delta} \subseteq U \inter V$ then there exists $W\in B$ such that $x\in W\subseteq U, V$. + \begin{subproof} + Suppose there exists $\delta \in \realsplus$ such that $\epsBall{x}{\delta} \subseteq U \inter V$. + $x \in \epsBall{x}{\delta}$. + $\epsBall{x}{\delta} \subseteq U$. + $\epsBall{x}{\delta} \subseteq V$. + $\epsBall{x}{\delta} \in B$. + \end{subproof} + It suffices to show that there exists $\delta \in \realsplus$ such that $\epsBall{x}{\delta} \subseteq U \inter V$. + + + %It suffices to show that there exists $x_0, \delta$ such that $x_0 \in \reals$ and $\delta \in \realsplus$ and $\epsBall{x_0}{\delta} \subseteq u \inter V$. + %There exists $x_1, \alpha$ such that $x_1 \in \reals$ and $\alpha \in \realsplus$ and $\epsBall{x_1}{\alpha} = U$. + %There exists $x_2, \beta$ such that $x_2 \in \reals$ and $\beta \in \realsplus$ and $\epsBall{x_2}{\beta} = V$. + %Then $ (x_1 - \alpha) < x < (x_1 + \alpha)$. + %Then $ (x_2 - \beta) < x < (x_2 + \beta)$. + %\begin{byCase} + % \caseOf{$x_1 = x_2$.} + % Take $\gamma \in \realsplus$ such that either $\gamma = \alpha \land \gamma \leq \beta$ or $\gamma \leq \alpha \land \gamma = \beta$. + % \caseOf{$x_1 < x_2$.} + % \caseOf{$x_1 > x_2$.} + %\end{byCase} + %%Take $m$ such that $m \in \min{\{(x_1 + \alpha), (x_2 + \beta)\}}$. + %Take $n$ such that $n \in \max{\{(x_1 - \alpha), (x_2 - \beta)\}}$. + %Then $m < x < n$. + %We show that there exists $x_1 \in \reals$ such that $x_1 \in U \inter V$ and $x_1 < x$. + %\begin{subproof} + % Suppose not. + % Then For all $y \in U \inter V$ we have $x \leq y$. + %\end{subproof} + %We show that there exists $x_2 \in \reals$ such that $x_2 \in U \inter V$ and $x_2 > x$. + %\begin{subproof} + % Trivial. + %\end{subproof} \end{byCase} \end{proof} @@ -230,7 +317,3 @@ Suppose $a,b \in \reals$. Then $\intervalopen{a}{b} \in \opens[\reals]$. \end{proposition} - -\begin{lemma}\label{safetwo} - Contradiction. -\end{lemma}
\ No newline at end of file |
