summaryrefslogtreecommitdiff
path: root/library/topology/real-topological-space.tex
diff options
context:
space:
mode:
authorSimon-Kor <52245124+Simon-Kor@users.noreply.github.com>2024-09-16 02:12:06 +0200
committerSimon-Kor <52245124+Simon-Kor@users.noreply.github.com>2024-09-16 02:12:06 +0200
commit640fe16eaab00ea29046ef18e6f751571d923eaa (patch)
treea15b2538f9895f54669251cd0ddf05c35ccf77d7 /library/topology/real-topological-space.tex
parent3ef20da08eda23db76d763a2c6c7ee416348a021 (diff)
Missmatched Assume Error found. not fixed
In line 137 and 140 of real-topological-space.tex Line 140 wont get parsed and line 140 will get parsed. Case matching in Checking.hs is not working as intended. Case phi@(Atomic p args) -> in line 960 in checking.hs is not reached in checking of the Fixing with a symbol Error Massage shows that < will be interpreted as a Term symbol there not as a predicate. Error Massage: zf: MismatchedAssume (TermSymbol (SymbolPredicate (PredicateRelation (Symbol "<"))) [TermVar (NamedVar "c"),TermVar (NamedVar "x")]) (Connected Implication (TermSymbol (SymbolPredicate (PredicateRelation (Command "rless"))) [TermVar (NamedVar "c"),TermVar (NamedVar "x")]) (TermSymbol (SymbolPredicate (PredicateRelation (Command "in"))) [TermVar (NamedVar "c"),TermSymbol (SymbolMixfix [Just (Command "epsBall"),Just InvisibleBraceL,Nothing,Just InvisibleBraceR,Just InvisibleBraceL,Nothing,Just InvisibleBraceR]) [TermVar (NamedVar "x"),TermVar (NamedVar "epsilon")]]))
Diffstat (limited to 'library/topology/real-topological-space.tex')
-rw-r--r--library/topology/real-topological-space.tex14
1 files changed, 11 insertions, 3 deletions
diff --git a/library/topology/real-topological-space.tex b/library/topology/real-topological-space.tex
index 8757ffb..1c5e4cb 100644
--- a/library/topology/real-topological-space.tex
+++ b/library/topology/real-topological-space.tex
@@ -132,9 +132,17 @@
\begin{proof}
$x - \epsilon \in \reals$.
$x + \epsilon \in \reals$.
-
- It suffices to show that for all $c$ such that $c \in \reals \land (x - \epsilon) < c < (x + \epsilon)$ we have $c \in \epsBall{x}{\epsilon}$.
- %Fix $c$ such that $c \in \reals \land (x - \epsilon) < c < (x + \epsilon)$.
+
+
+ %It suffices to show that for all $c$ such that $c \rless x$ we have $c \in \epsBall{x}{\epsilon}$.
+ %Fix $c$ such that $c \rless x$.
+%
+ %It suffices to show that for all $c$ such that $c < x$ we have $c \in \epsBall{x}{\epsilon}$.
+ %Fix $c$ such that $c < x$.
+
+
+ It suffices to show that for all $c$ such that $c \in \reals \land (x - \epsilon) \rless c \rless (x + \epsilon)$ we have $c \in \epsBall{x}{\epsilon}$.
+ Fix $c$ such that $(c \in \reals) \land (x - \epsilon) \rless c \rless (x + \epsilon)$.
%Suppose $(x - \epsilon) < c < (x + \epsilon)$.
\end{proof}