summaryrefslogtreecommitdiff
path: root/library/topology/topological-space.tex
diff options
context:
space:
mode:
Diffstat (limited to 'library/topology/topological-space.tex')
-rw-r--r--library/topology/topological-space.tex258
1 files changed, 258 insertions, 0 deletions
diff --git a/library/topology/topological-space.tex b/library/topology/topological-space.tex
new file mode 100644
index 0000000..e467d48
--- /dev/null
+++ b/library/topology/topological-space.tex
@@ -0,0 +1,258 @@
+\import{set.tex}
+\import{set/powerset.tex}
+
+\section{Topological spaces}
+
+\begin{struct}\label{topological_space}
+ A topological space $X$ is a onesorted structure equipped with
+ \begin{enumerate}
+ \item $\opens$
+ \end{enumerate}
+ such that
+ \begin{enumerate}
+ \item\label{opens_type} $\opens[X]$ is a family of subsets of $\carrier[X]$.
+ \item\label{emptyset_open} $\emptyset\in\opens[X]$.
+ \item\label{carrier_open} $\carrier[X]\in\opens[X]$.
+ \item\label{opens_inter} For all $A, B\in \opens[X]$ we have $A\inter B\in\opens[X]$.
+ \item\label{opens_unions} For all $F\subseteq \opens[X]$ we have $\unions{F}\in\opens[X]$.
+ \end{enumerate}
+\end{struct}
+
+\begin{abbreviation}\label{is_open_in}
+ $U$ is open iff $U\in\opens$.
+\end{abbreviation}
+
+\begin{abbreviation}\label{is_open}
+ $U$ is open in $X$ iff $U\in\opens[X]$.
+\end{abbreviation}
+
+\begin{proposition}\label{union_open}
+ Let $X$ be a topological space.
+ Suppose $A$, $B$ are open.
+ Then $A\union B$ is open.
+\end{proposition}
+\begin{proof}
+ $\{A, B\}\subseteq \opens$.
+ $\unions{\{A, B\}}$ is open.
+ $\unions{\{A, B\}} = A\union B$.
+\end{proof}
+
+\begin{definition}[Interiors]\label{interiors}
+ $\interiors{A}{X} = \{ U\in\opens[X]\mid U\subseteq A\}$.
+\end{definition}
+
+\begin{definition}[Interior]\label{interior}
+ $\interior{A}{X} = \unions{\interiors{A}{X}}$.
+\end{definition}
+
+\begin{proposition}[Interior]\label{interior_elem_intro}
+ Suppose $U\in\opens[X]$ and $a\in U\subseteq A$.
+ Then $a\in\interior{A}{X}$.
+\end{proposition}
+\begin{proof}
+ $U\in\interiors{A}{X}$.
+\end{proof}
+
+\begin{proposition}[Interior]\label{interior_elem_elim}
+ Suppose $a\in\interior{A}{X}$.
+ Then there exists $U\in\opens[X]$
+ such that $a\in U\subseteq A$.
+\end{proposition}
+\begin{proof}
+ Take $U\in\interiors{A}{X}$ such that $a\in U$.
+\end{proof}
+
+\begin{proposition}[Interior]\label{interior_elem_iff}
+ $a\in\interior{A}{X}$ iff
+ there exists $U\in\opens[X]$
+ such that $a\in U\subseteq A$.
+\end{proposition}
+\begin{proof}
+ Follows by \cref{interior_elem_intro,interior_elem_elim}.
+\end{proof}
+
+\begin{proposition}\label{interior_of_open}
+ Let $X$ be a topological space.
+ Suppose $U$ is open in $X$.
+ Then $\interior{U}{X} = U$.
+\end{proposition}
+\begin{proof}
+ $U\in\interiors{U}{X}$.
+ Follows by \cref{subseteq,interior_elem_iff,neq_witness}.
+\end{proof}
+
+\begin{proposition}\label{interior_is_open}
+ Let $X$ be a topological space.
+ Then $\interior{A}{X}$ is open.
+\end{proposition}
+\begin{proof}
+ $\interiors{A}{X}\subseteq\opens[X]$.
+\end{proof}
+
+\begin{proposition}\label{interior_subseteq}
+ Then $\interior{A}{X}\subseteq A$.
+\end{proposition}
+
+\begin{proposition}\label{interior_maximal}
+ Let $X$ be a topological space.
+ Suppose $U\subseteq A\subseteq \carrier[X]$.
+ Suppose $U$ is open.
+ Then $U\subseteq \interior{A}{X}$.
+\end{proposition}
+
+\begin{proposition}\label{interior_eq_self_implies_open}
+ Let $X$ be a topological space.
+ Suppose $\interior{A}{X} = A$.
+ Then $A$ is open.
+\end{proposition}
+
+\begin{corollary}\label{interior_eq_self_iff_open}
+ Let $X$ be a topological space.
+ Then $\interior{A}{X} = A$ iff $A$ is open in $X$.
+\end{corollary}
+
+\begin{proposition}\label{interior_carrier}
+ Let $X$ be a topological space.
+ $\interior{\carrier[X]}{X} = \carrier[X]$.
+\end{proposition}
+\begin{proof}
+ $\carrier[X]\in\opens[X]$.
+ $\carrier[X]\subseteq\carrier[X]$ by \cref{subseteq_refl}.
+ Thus $\carrier[X]\in\interiors{\carrier[X]}{X}$ by \cref{interiors}.
+ Follows by set extensionality.
+\end{proof}
+
+\begin{proposition}\label{interior_type}
+ Let $X$ be a topological space.
+ Then $\interior{A}{X}\in\pow{\carrier[X]}$.
+\end{proposition}
+\begin{proof}
+ We have $\interiors{A}{X}\subseteq \pow{\carrier[X]}$.
+ % As they are open subsets of X containing A
+ %
+ Thus $\interior{A}{X}\subseteq \carrier[X]$ by \cref{interior,unions_subseteq_of_powerset_is_subseteq}.
+\end{proof}
+
+\subsection{Closed sets}
+
+\begin{definition}\label{is_closed_in}
+ $A$ is closed in $X$ iff $\carrier[X]\setminus A$ is open in $X$.
+\end{definition}
+
+\begin{abbreviation}\label{is_clopen_in}
+ $A$ is clopen in $X$ iff $A$ is open in $X$ and closed in $X$.
+\end{abbreviation}
+
+\begin{proposition}\label{emptyset_is_closed}
+ Let $X$ be a topological space.
+ Then $\emptyset$ is closed in $X$.
+\end{proposition}
+\begin{proof}
+ $\carrier[X]\setminus \emptyset = \carrier[X]$.
+\end{proof}
+
+\begin{proposition}\label{carrier_is_closed}
+ Let $X$ be a topological space.
+ Then $\emptyset$ is closed in $X$.
+\end{proposition}
+\begin{proof}
+ $\carrier[X]\setminus \carrier[X] = \emptyset$.
+\end{proof}
+
+\begin{definition}[Closed sets]\label{closeds}
+ $\closeds{X} = \{ A\in\pow{\carrier[X]}\mid\text{$A$ is closed in $X$}\}$.
+\end{definition}
+
+\begin{proposition}\label{complement_of_open_elem_closeds}
+ Let $X$ be a topological space.
+ Let $U\in\opens[X]$.
+ Then $\carrier[X]\setminus U\in\closeds{X}$.
+\end{proposition}
+\begin{proof}
+ $\carrier[X]\setminus U\in\pow{\carrier[X]}$.
+ $U\subseteq\carrier[X]$ by \cref{opens_type}.
+ Hence $\carrier[X]\setminus(\carrier[X]\setminus U) = U$ by \cref{double_relative_complement}.
+ $\carrier[X]\setminus U$ is closed in $X$.
+\end{proof}
+
+
+\begin{definition}[Closed covers]\label{closures}
+ $\closures{A}{X} = \{ D\in\pow{\carrier[X]}\mid \text{$A\subseteq D$ and $D$ is closed in $X$}\}$.
+\end{definition}
+
+\begin{definition}[Closure]\label{closure}
+ $\closure{A}{X} = \inters{\closures{A}{X}}$.
+\end{definition}
+
+\begin{proposition}\label{closure_emptyset}
+ Let $X$ be a topological space.
+ Then $\closure{\emptyset}{X} = \emptyset$.
+\end{proposition}
+\begin{proof}
+ $\emptyset\in\closures{\emptyset}{X}$.
+\end{proof}
+
+\begin{proposition}\label{closure_carrier}
+ Let $X$ be a topological space.
+ Then $\closure{\carrier[X]}{X} = \carrier[X]$.
+\end{proposition}
+\begin{proof}
+ %For all $D\in\closures{\carrier[X]}{X}$ we have $\carrier[X]\subseteq D$ by \cref{closures}.
+ %For all $D\in\closures{\carrier[X]}{X}$ we have $\carrier[X]\supseteq D$ by \cref{pow_iff,closures}.
+ %For all $D\in\closures{\carrier[X]}{X}$ we have $\carrier[X] = D$ by \cref{subseteq_antisymmetric}.
+ For all $D\in\closures{\carrier[X]}{X}$ we have $\carrier[X] = D$
+ by \cref{pow_iff,closures,subseteq_antisymmetric}.
+ Now $\carrier[X]\in\closures{\carrier[X]}{X}$.
+ Thus $\closures{\carrier[X]}{X} = \{\carrier[X]\}$
+ by \cref{singleton_iff_inhabited_subsingleton}.
+ Follows by \cref{inters_singleton,closure}.
+\end{proof}
+
+
+\begin{proposition}%[Complement of interior equals closure of complement]
+\label{complement_interior_eq_closure_complement}
+ $\carrier[X]\setminus\interior{A}{X} = \closure{(\carrier[X]\setminus A)}{X}$.
+\end{proposition}
+\begin{proof}
+ Omitted. % Use general De Morgan's Law in Pow|X|
+\end{proof}
+
+\begin{definition}[Frontier]\label{frontier}
+ $\frontier{A}{X} = \closure{A}{X}\setminus\interior{A}{X}$.
+\end{definition}
+
+
+
+\begin{proposition}%[Frontier as intersection of closures]
+\label{frontier_as_inter}
+ $\frontier{A}{X} = \closure{A}{X} \inter \closure{(\carrier[X]\setminus A)}{X}$.
+\end{proposition}
+\begin{proof}
+ % TODO
+ Omitted.
+ %$\frontier{A}{X} = \closure{A}{X}\setminus\interior{A}{X}$. % by frontier (definition)
+ %$\closure{A}{X}\setminus\interior{A}{X} = \closure{A}{X}\inter(\carrier[X]\setminus\interior{A}{X})$. % by setminus_eq_inter_complement
+ %$\closure{A}{X}\inter(\carrier[X]\setminus\interior{A}{X}) = \closure{A}{X} \inter \closure{(\carrier[X]\setminus A)}{X}$. % by complement_interior_eq_closure_complement
+\end{proof}
+
+\begin{proposition}\label{frontier_of_emptyset}
+ Let $X$ be a topological space.
+ Then $\frontier{\emptyset}{X} = \emptyset$.
+\end{proposition}
+\begin{proof}
+ Follows by set extensionality.
+\end{proof}
+
+\begin{proposition}\label{frontier_of_carrier}
+ Let $X$ be a topological space.
+ Then $\frontier{\carrier[X]}{X} = \emptyset$.
+\end{proposition}
+\begin{proof}
+ $\frontier{\carrier[X]}{X} = \carrier[X]\setminus\carrier[X]$
+ by \cref{frontier,interior_carrier,closure_carrier}.
+ Follows by \cref{setminus_self}.
+\end{proof}
+
+\begin{definition}\label{neighbourhoods}
+ $\neighbourhoods{x}{X} = \{U\in\opens[X] \mid x\in U\}$.
+\end{definition}