summaryrefslogtreecommitdiff
path: root/library/topology/topological-space.tex
diff options
context:
space:
mode:
Diffstat (limited to 'library/topology/topological-space.tex')
-rw-r--r--library/topology/topological-space.tex10
1 files changed, 9 insertions, 1 deletions
diff --git a/library/topology/topological-space.tex b/library/topology/topological-space.tex
index e467d48..2bbdf09 100644
--- a/library/topology/topological-space.tex
+++ b/library/topology/topological-space.tex
@@ -11,7 +11,6 @@
such that
\begin{enumerate}
\item\label{opens_type} $\opens[X]$ is a family of subsets of $\carrier[X]$.
- \item\label{emptyset_open} $\emptyset\in\opens[X]$.
\item\label{carrier_open} $\carrier[X]\in\opens[X]$.
\item\label{opens_inter} For all $A, B\in \opens[X]$ we have $A\inter B\in\opens[X]$.
\item\label{opens_unions} For all $F\subseteq \opens[X]$ we have $\unions{F}\in\opens[X]$.
@@ -26,6 +25,15 @@
$U$ is open in $X$ iff $U\in\opens[X]$.
\end{abbreviation}
+\begin{proposition}\label{emptyset_open}
+ Let $X$ be a topological space.
+ Then $\emptyset$ is open in $X$.
+\end{proposition}
+\begin{proof}
+ We have $\unions{\emptyset} = \emptyset\subseteq\opens[X]$ by \cref{unions_emptyset,emptyset_subseteq}.
+ Follows by \cref{opens_unions}.
+\end{proof}
+
\begin{proposition}\label{union_open}
Let $X$ be a topological space.
Suppose $A$, $B$ are open.