diff options
Diffstat (limited to 'library/topology/urysohn.tex')
| -rw-r--r-- | library/topology/urysohn.tex | 140 |
1 files changed, 70 insertions, 70 deletions
diff --git a/library/topology/urysohn.tex b/library/topology/urysohn.tex index ff6a231..ae03273 100644 --- a/library/topology/urysohn.tex +++ b/library/topology/urysohn.tex @@ -36,7 +36,7 @@ The first tept will be a formalisation of chain constructions. % $\overline{A_{i-1}} \subset \interior{A_{i}}$. % In this case we call the chain legal. -\begin{definition}\label{one_to_n_set} +\begin{definition}\label{urysohnone_one_to_n_set} $\seq{m}{n} = \{x \in \naturals \mid m \leq x \leq n\}$. \end{definition} @@ -48,7 +48,7 @@ The first tept will be a formalisation of chain constructions. % together with the existence of an indexing function. % %%----------------------- -\begin{struct}\label{sequence} +\begin{struct}\label{urysohnone_sequence} A sequence $X$ is a onesorted structure equipped with \begin{enumerate} \item $\indexx$ @@ -57,8 +57,8 @@ The first tept will be a formalisation of chain constructions. \end{enumerate} such that \begin{enumerate} - \item\label{indexset_is_subset_naturals} $\indexxset[X] \subseteq \naturals$. - \item\label{index_is_bijection} $\indexx[X]$ is a bijection from $\indexxset[X]$ to $\carrier[X]$. + \item\label{urysohnone_indexset_is_subset_naturals} $\indexxset[X] \subseteq \naturals$. + \item\label{urysohnone_index_is_bijection} $\indexx[X]$ is a bijection from $\indexxset[X]$ to $\carrier[X]$. \end{enumerate} \end{struct} @@ -67,12 +67,12 @@ The first tept will be a formalisation of chain constructions. -\begin{definition}\label{cahin_of_subsets} +\begin{definition}\label{urysohnone_cahin_of_subsets} $C$ is a chain of subsets iff $C$ is a sequence and for all $n,m \in \indexxset[C]$ such that $n < m$ we have $\indexx[C](n) \subseteq \indexx[C](m)$. \end{definition} -\begin{definition}\label{chain_of_n_subsets} +\begin{definition}\label{urysohnone_chain_of_n_subsets} $C$ is a chain of $n$ subsets iff $C$ is a chain of subsets and $n \in \indexxset[C]$ and for all $m \in \naturals$ such that $m \leq n$ we have $m \in \indexxset[C]$. @@ -84,7 +84,7 @@ The first tept will be a formalisation of chain constructions. % and also for the subproof of continuity of the limit. -% \begin{definition}\label{legal_chain} +% \begin{definition}\label{urysohnone_legal_chain} % $C$ is a legal chain of subsets of $X$ iff % $C \subseteq \pow{X}$. %and % %there exist $f \in \funs{C}{\naturals}$ such that @@ -106,49 +106,49 @@ The first tept will be a formalisation of chain constructions. \subsection{staircase function} -\begin{definition}\label{minimum} +\begin{definition}\label{urysohnone_minimum} $\min{X} = \{x \in X \mid \forall y \in X. x \leq y \}$. \end{definition} -\begin{definition}\label{maximum} +\begin{definition}\label{urysohnone_maximum} $\max{X} = \{x \in X \mid \forall y \in X. x \geq y \}$. \end{definition} -\begin{definition}\label{intervalclosed} +\begin{definition}\label{urysohnone_intervalclosed} $\intervalclosed{a}{b} = \{x \in \reals \mid a \leq x \leq b\}$. \end{definition} -\begin{definition}\label{intervalopen} +\begin{definition}\label{urysohnone_intervalopen} $\intervalopen{a}{b} = \{ x \in \reals \mid a < x < b\}$. \end{definition} -\begin{struct}\label{staircase_function} +\begin{struct}\label{urysohnone_staircase_function} A staircase function $f$ is a onesorted structure equipped with \begin{enumerate} \item $\chain$ \end{enumerate} such that \begin{enumerate} - \item \label{staircase_is_function} $f$ is a function to $\intervalclosed{\zero}{1}$. - \item \label{staircase_domain} $\dom{f}$ is a topological space. - \item \label{staricase_def_chain} $C$ is a chain of subsets. - \item \label{staircase_chain_is_in_domain} for all $x \in C$ we have $x \subseteq \dom{f}$. - \item \label{staircase_behavoir_index_zero} $f(\indexx[C](1))= 1$. - \item \label{staircase_behavoir_index_n} $f(\dom{f}\setminus \unions{C}) = \zero$. - \item \label{staircase_chain_indeset} There exist $n$ such that $\indexxset[C] = \seq{\zero}{n}$. - \item \label{staircase_behavoir_index_arbetrray} for all $n \in \indexxset[C]$ + \item \label{urysohnone_staircase_is_function} $f$ is a function to $\intervalclosed{\zero}{1}$. + \item \label{urysohnone_staircase_domain} $\dom{f}$ is a topological space. + \item \label{urysohnone_staricase_def_chain} $C$ is a chain of subsets. + \item \label{urysohnone_staircase_chain_is_in_domain} for all $x \in C$ we have $x \subseteq \dom{f}$. + \item \label{urysohnone_staircase_behavoir_index_zero} $f(\indexx[C](1))= 1$. + \item \label{urysohnone_staircase_behavoir_index_n} $f(\dom{f}\setminus \unions{C}) = \zero$. + \item \label{urysohnone_staircase_chain_indeset} There exist $n$ such that $\indexxset[C] = \seq{\zero}{n}$. + \item \label{urysohnone_staircase_behavoir_index_arbetrray} for all $n \in \indexxset[C]$ such that $n \neq \zero$ we have $f(\indexx[C](n) \setminus \indexx[C](n-1)) = \rfrac{n}{ \max{\indexxset[C]} }$. \end{enumerate} \end{struct} -\begin{definition}\label{legal_staircase} +\begin{definition}\label{urysohnone_legal_staircase} $f$ is a legal staircase function iff $f$ is a staircase function and for all $n,m \in \indexxset[\chain[f]]$ such that $n \leq m$ we have $f(\indexx[\chain[f]](n)) \leq f(\indexx[\chain[f]](m))$. \end{definition} -\begin{abbreviation}\label{urysohnspace} +\begin{abbreviation}\label{urysohnone_urysohnspace} $X$ is a urysohn space iff $X$ is a topological space and for all $A,B \in \closeds{X}$ such that $A \inter B = \emptyset$ @@ -156,49 +156,49 @@ The first tept will be a formalisation of chain constructions. such that $A \subseteq A'$ and $B \subseteq B'$ and $A' \inter B' = \emptyset$. \end{abbreviation} -\begin{definition}\label{urysohnchain} +\begin{definition}\label{urysohnone_urysohnchain} $C$ is a urysohnchain in $X$ of cardinality $k$ iff %<---- TODO: cardinality unused! $C$ is a chain of subsets and for all $A \in C$ we have $A \subseteq X$ and for all $n,m \in \indexxset[C]$ such that $n < m$ we have $\closure{\indexx[C](n)}{X} \subseteq \interior{\indexx[C](m)}{X}$. \end{definition} -\begin{definition}\label{urysohnchain_without_cardinality} +\begin{definition}\label{urysohnone_urysohnchain_without_cardinality} $C$ is a urysohnchain in $X$ iff $C$ is a chain of subsets and for all $A \in C$ we have $A \subseteq X$ and for all $n,m \in \indexxset[C]$ such that $n < m$ we have $\closure{\indexx[C](n)}{X} \subseteq \interior{\indexx[C](m)}{X}$. \end{definition} -\begin{abbreviation}\label{infinte_sequence} +\begin{abbreviation}\label{urysohnone_infinte_sequence} $S$ is a infinite sequence iff $S$ is a sequence and $\indexxset[S]$ is infinite. \end{abbreviation} -\begin{definition}\label{infinite_product} +\begin{definition}\label{urysohnone_infinite_product} $X$ is the infinite product of $Y$ iff $X$ is a infinite sequence and for all $i \in \indexxset[X]$ we have $\indexx[X](i) = Y$. \end{definition} -\begin{definition}\label{refinmant} +\begin{definition}\label{urysohnone_refinmant} $C'$ is a refinmant of $C$ iff $C'$ is a urysohnchain in $X$ and for all $x \in C$ we have $x \in C'$ and for all $y \in C$ such that $y \subset x$ we have there exist $c \in C'$ such that $y \subset c \subset x$ and for all $g \in C'$ such that $g \neq c$ we have not $y \subset g \subset x$. \end{definition} -\begin{abbreviation}\label{two} +\begin{abbreviation}\label{urysohnone_two} $\two = \suc{1}$. \end{abbreviation} -\begin{lemma}\label{two_in_reals} +\begin{lemma}\label{urysohnone_two_in_reals} $\two \in \reals$. \end{lemma} -\begin{lemma}\label{two_in_naturals} +\begin{lemma}\label{urysohnone_two_in_naturals} $\two \in \naturals$. \end{lemma} -\begin{inductive}\label{power_of_two} +\begin{inductive}\label{urysohnone_power_of_two} Define $\powerOfTwoSet \subseteq (\naturals \times \naturals)$. \begin{enumerate} \item $(\zero, 1) \in \powerOfTwoSet$. @@ -206,45 +206,45 @@ The first tept will be a formalisation of chain constructions. \end{enumerate} \end{inductive} -\begin{abbreviation}\label{pot} +\begin{abbreviation}\label{urysohnone_pot} $\pot = \powerOfTwoSet$. \end{abbreviation} -\begin{lemma}\label{dom_pot} +\begin{lemma}\label{urysohnone_dom_pot} $\dom{\pot} = \naturals$. \end{lemma} \begin{proof} Omitted. \end{proof} -\begin{lemma}\label{ran_pot} +\begin{lemma}\label{urysohnone_ran_pot} $\ran{\pot} \subseteq \naturals$. \end{lemma} -\begin{axiom}\label{pot1} +\begin{axiom}\label{urysohnone_pot1} $\pot \in \funs{\naturals}{\naturals}$. \end{axiom} -\begin{axiom}\label{pot2} +\begin{axiom}\label{urysohnone_pot2} For all $n \in \naturals$ we have there exist $k\in \naturals$ such that $(n, k) \in \powerOfTwoSet$ and $\apply{\pot}{n}=k$. %$\pot(n) = k$ iff there exist $x \in \powerOfTwoSet$ such that $x = (n,k)$. \end{axiom} %Without this abbreviation \pot cant be sed as a function in the standard sense -\begin{abbreviation}\label{pot_as_function} +\begin{abbreviation}\label{urysohnone_pot_as_function} $\pot(n) = \apply{\pot}{n}$. \end{abbreviation} %Take all points, besids one but then take all open sets not containing x but all other, so \{x\} has to be closed -\begin{axiom}\label{hausdorff_implies_singltons_closed} +\begin{axiom}\label{urysohnone_hausdorff_implies_singltons_closed} For all $X$ such that $X$ is Hausdorff we have for all $x \in \carrier[X]$ we have $\{x\}$ is closed in $X$. \end{axiom} -\begin{lemma}\label{urysohn_set_in_between} +\begin{lemma}\label{urysohnone_urysohn_set_in_between} Let $X$ be a urysohn space. Suppose $A,B \in \closeds{X}$. Suppose $A \subset B$. @@ -284,7 +284,7 @@ The first tept will be a formalisation of chain constructions. \end{proof} -\begin{proposition}\label{urysohnchain_induction_begin} +\begin{proposition}\label{urysohnone_urysohnchain_induction_begin} Let $X$ be a urysohn space. Suppose $A,B \in \closeds{X}$. Suppose $A \inter B$ is empty. @@ -347,7 +347,7 @@ The first tept will be a formalisation of chain constructions. \end{proof} -\begin{proposition}\label{urysohnchain_induction_begin_step_two} +\begin{proposition}\label{urysohnone_urysohnchain_induction_begin_step_two} Let $X$ be a urysohn space. Suppose $A,B \in \closeds{X}$. Suppose $A \inter B$ is empty. @@ -364,7 +364,7 @@ The first tept will be a formalisation of chain constructions. -\begin{proposition}\label{t_four_propositon} +\begin{proposition}\label{urysohnone_t_four_propositon} Let $X$ be a urysohn space. Then for all $A,B \subseteq X$ such that $\closure{A}{X} \subseteq \interior{B}{X}$ we have there exists $C \subseteq X$ such that @@ -376,7 +376,7 @@ The first tept will be a formalisation of chain constructions. -\begin{proposition}\label{urysohnchain_induction_step_existence} +\begin{proposition}\label{urysohnone_urysohnchain_induction_step_existence} Let $X$ be a urysohn space. Suppose $U$ is a urysohnchain in $X$. Then there exist $U'$ such that $U'$ is a refinmant of $U$ and $U'$ is a urysohnchain in $X$. @@ -390,7 +390,7 @@ The first tept will be a formalisation of chain constructions. % such that $\closure{\indexx[U](n)}{X} \subseteq \interior{C}{X} \subseteq \closure{C}{X} \subseteq \interior{\indexx[U](n+1)}{X}$. - %\begin{definition}\label{refinmant} + %\begin{definition}\label{urysohnone_refinmant} % $C'$ is a refinmant of $C$ iff for all $x \in C$ we have $x \in C'$ and % for all $y \in C$ such that $y \subset x$ % we have there exist $c \in C'$ such that $y \subset c \subset x$ @@ -404,7 +404,7 @@ The first tept will be a formalisation of chain constructions. -\begin{proposition}\label{existence_of_staircase_function} +\begin{proposition}\label{urysohnone_existence_of_staircase_function} Let $X$ be a urysohn space. Suppose $U$ is a urysohnchain in $X$ and $U$ has cardinality $k$. Suppose $k \neq \zero$. @@ -416,7 +416,7 @@ The first tept will be a formalisation of chain constructions. Omitted. \end{proof} -\begin{abbreviation}\label{refinment_abbreviation} +\begin{abbreviation}\label{urysohnone_refinment_abbreviation} $x \refine y$ iff $x$ is a refinmant of $y$. \end{abbreviation} @@ -424,27 +424,27 @@ The first tept will be a formalisation of chain constructions. -\begin{abbreviation}\label{sequence_of_functions} +\begin{abbreviation}\label{urysohnone_sequence_of_functions} $f$ is a sequence of functions iff $f$ is a sequence and for all $g \in \carrier[f]$ we have $g$ is a function. \end{abbreviation} -\begin{abbreviation}\label{sequence_in_reals} +\begin{abbreviation}\label{urysohnone_sequence_in_reals} $s$ is a sequence of real numbers iff $s$ is a sequence and for all $r \in \carrier[s]$ we have $r \in \reals$. \end{abbreviation} -\begin{axiom}\label{abs_behavior1} +\begin{axiom}\label{urysohnone_abs_behavior1} If $x \geq \zero$ then $\abs{x} = x$. \end{axiom} -\begin{axiom}\label{abs_behavior2} +\begin{axiom}\label{urysohnone_abs_behavior2} If $x < \zero$ then $\abs{x} = \neg{x}$. \end{axiom} -\begin{abbreviation}\label{converge} +\begin{abbreviation}\label{urysohnone_converge} $s$ converges iff $s$ is a sequence of real numbers and $\indexxset[s]$ is infinite and for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have @@ -454,7 +454,7 @@ The first tept will be a formalisation of chain constructions. \end{abbreviation} -\begin{definition}\label{limit_of_sequence} +\begin{definition}\label{urysohnone_limit_of_sequence} $x$ is the limit of $s$ iff $s$ is a sequence of real numbers and $x \in \reals$ and for all $\epsilon \in \reals$ such that $\epsilon > \zero$ @@ -463,7 +463,7 @@ The first tept will be a formalisation of chain constructions. we have $\abs{x - \indexx[s](n)} < \epsilon$. \end{definition} -\begin{proposition}\label{existence_of_limit} +\begin{proposition}\label{urysohnone_existence_of_limit} Let $s$ be a sequence of real numbers. Then $s$ converges iff there exist $x \in \reals$ such that $x$ is the limit of $s$. @@ -472,22 +472,22 @@ The first tept will be a formalisation of chain constructions. Omitted. \end{proof} -\begin{definition}\label{limit_sequence} +\begin{definition}\label{urysohnone_limit_sequence} $x$ is the limit sequence of $f$ iff $x$ is a sequence and $\indexxset[x] = \dom{f}$ and for all $n \in \indexxset[x]$ we have $\indexx[x](n) = f(n)$. \end{definition} -\begin{definition}\label{realsminus} +\begin{definition}\label{urysohnone_realsminus} $\realsminus = \{r \in \reals \mid r < \zero\}$. \end{definition} -\begin{abbreviation}\label{realsplus} +\begin{abbreviation}\label{urysohnone_realsplus} $\realsplus = \reals \setminus \realsminus$. \end{abbreviation} -\begin{proposition}\label{intervalclosed_subseteq_reals} +\begin{proposition}\label{urysohnone_intervalclosed_subseteq_reals} Suppose $a,b \in \reals$. Suppose $a < b$. Then $\intervalclosed{a}{b} \subseteq \reals$. @@ -495,7 +495,7 @@ The first tept will be a formalisation of chain constructions. -\begin{lemma}\label{fraction1} +\begin{lemma}\label{urysohnone_fraction1} Let $x \in \reals$. Then for all $y \in \reals$ such that $x \neq y$ we have there exists $r \in \rationals$ such that $y < r < x$ or $x < r < y$. \end{lemma} @@ -503,7 +503,7 @@ The first tept will be a formalisation of chain constructions. Omitted. \end{proof} -\begin{lemma}\label{frection2} +\begin{lemma}\label{urysohnone_frection2} Suppose $a,b \in \reals$. Suppose $a < b$. Then $\intervalopen{a}{b}$ is infinite. @@ -512,7 +512,7 @@ The first tept will be a formalisation of chain constructions. Omitted. \end{proof} -\begin{lemma}\label{frection3} +\begin{lemma}\label{urysohnone_frection3} Suppose $a \in \reals$. Suppose $a < \zero$. Then there exist $N \in \naturals$ such that for all $N' \in \naturals$ such that $N' > N$ we have $\zero < \rfrac{1}{\pot(N')} < a$. @@ -521,7 +521,7 @@ The first tept will be a formalisation of chain constructions. Omitted. \end{proof} -\begin{proposition}\label{fraction4} +\begin{proposition}\label{urysohnone_fraction4} Suppose $a,b,\epsilon \in \reals$. Suppose $\epsilon > \zero$. $\abs{a - b} < \epsilon$ iff $b \in \intervalopen{(a - \epsilon)}{(a + \epsilon)}$. @@ -530,7 +530,7 @@ The first tept will be a formalisation of chain constructions. Omitted. \end{proof} -\begin{proposition}\label{fraction5} +\begin{proposition}\label{urysohnone_fraction5} Suppose $a,b,\epsilon \in \reals$. Suppose $\epsilon > \zero$. $b \in \intervalopen{(a - \epsilon)}{(a + \epsilon)}$ iff $a \in \intervalopen{(b - \epsilon)}{(b + \epsilon)}$. @@ -539,17 +539,17 @@ The first tept will be a formalisation of chain constructions. Omitted. \end{proof} -\begin{proposition}\label{fraction6} +\begin{proposition}\label{urysohnone_fraction6} Suppose $a,\epsilon \in \reals$. Suppose $\epsilon > \zero$. $\intervalopen{(a - \epsilon)}{(a + \epsilon)} = \{r \in \reals \mid (a - \epsilon) < r < (a + \epsilon)\} $. \end{proposition} -\begin{abbreviation}\label{epsilonball} +\begin{abbreviation}\label{urysohnone_epsilonball} $\epsBall{a}{\epsilon} = \intervalopen{(a - \epsilon)}{(a + \epsilon)}$. \end{abbreviation} -\begin{proposition}\label{fraction7} +\begin{proposition}\label{urysohnone_fraction7} Suppose $a,\epsilon \in \reals$. Suppose $\epsilon > \zero$. Then there exist $b \in \rationals$ such that $b \in \epsBall{a}{\epsilon}$. @@ -561,11 +561,11 @@ The first tept will be a formalisation of chain constructions. -%\begin{definition}\label{sequencetwo} +%\begin{definition}\label{urysohnone_sequencetwo} % $Z$ is a sequencetwo iff $Z = (N,f,B)$ and $N \subseteq \naturals$ and $f$ is a bijection from $N$ to $B$. %\end{definition} % -%\begin{proposition}\label{sequence_existence} +%\begin{proposition}\label{urysohnone_sequence_existence} % Suppose $N \subseteq \naturals$. % Suppose $M \subseteq \naturals$. % Suppose $N = M$. @@ -586,7 +586,7 @@ The first tept will be a formalisation of chain constructions. -\begin{theorem}\label{urysohn} +\begin{theorem}\label{urysohnone_urysohn1} Let $X$ be a urysohn space. Suppose $A,B \in \closeds{X}$. Suppose $A \inter B$ is empty. @@ -599,7 +599,7 @@ The first tept will be a formalisation of chain constructions. There exist $\eta$ such that $\carrier[\eta] = \{A, (\carrier[X] \setminus B)\}$ and $\indexxset[\eta] = \{\zero, 1\}$ and $\indexx[\eta](\zero) = A$ - and $\indexx[\eta](1) = (\carrier[X] \setminus B)$ by \cref{urysohnchain_induction_begin}. + and $\indexx[\eta](1) = (\carrier[X] \setminus B)$ by \cref{urysohnone_urysohnchain_induction_begin}. We show that there exist $\zeta$ such that $\zeta$ is a sequence and $\indexxset[\zeta] = \naturals$ @@ -919,6 +919,6 @@ The first tept will be a formalisation of chain constructions. % \end{subproof} \end{proof} % -%\begin{theorem}\label{safe} +%\begin{theorem}\label{urysohnone_safe} % Contradiction. %\end{theorem} |
