summaryrefslogtreecommitdiff
path: root/library/topology/urysohn.tex
diff options
context:
space:
mode:
Diffstat (limited to 'library/topology/urysohn.tex')
-rw-r--r--library/topology/urysohn.tex924
1 files changed, 924 insertions, 0 deletions
diff --git a/library/topology/urysohn.tex b/library/topology/urysohn.tex
new file mode 100644
index 0000000..cd85fbc
--- /dev/null
+++ b/library/topology/urysohn.tex
@@ -0,0 +1,924 @@
+\import{topology/topological-space.tex}
+\import{topology/separation.tex}
+\import{topology/continuous.tex}
+\import{topology/basis.tex}
+\import{numbers.tex}
+\import{function.tex}
+\import{set.tex}
+\import{cardinal.tex}
+\import{relation.tex}
+\import{relation/uniqueness.tex}
+\import{set/cons.tex}
+\import{set/powerset.tex}
+\import{set/fixpoint.tex}
+\import{set/product.tex}
+
+\section{Urysohns Lemma Part 1 with struct}\label{form_sec_urysohn1}
+% In this section we want to proof Urysohns lemma.
+% We try to follow the proof of Klaus Jänich in his book. TODO: Book reference
+% The Idea is to construct staircase functions as a chain.
+% The limit of our chain turns out to be our desired continuous function from a topological space $X$ to $[0,1]$.
+% With the property that \[f\mid_{A}=1 \land f\mid_{B}=0\] for \[A,B\] closed sets.
+
+%Chains of sets.
+
+This is the first attempt to prove Urysohns Lemma with the usage of struct.
+
+\subsection{Chains of sets}
+% Assume $A,B$ are subsets of a topological space $X$.
+
+% As Jänich propose we want a special property on chains of subsets.
+% We need a rising chain of subsets $\mathfrak{A} = (A_{0}, ... ,A_{r})$ of $A$, i.e.
+% \begin{align}
+% A = A_{0} \subset A_{1} \subset ... \subset A_{r} \subset X\setminus B
+% \end{align}
+% such that for all elements in this chain following holds,
+% $\overline{A_{i-1}} \subset \interior{A_{i}}$.
+% In this case we call the chain legal.
+
+\begin{definition}\label{urysohnone_one_to_n_set}
+ $\seq{m}{n} = \{x \in \naturals \mid m \leq x \leq n\}$.
+\end{definition}
+
+
+
+%%-----------------------
+% Idea:
+% A sequence could be define as a family of sets,
+% together with the existence of an indexing function.
+%
+%%-----------------------
+\begin{struct}\label{urysohnone_sequence}
+ A sequence $X$ is a onesorted structure equipped with
+ \begin{enumerate}
+ \item $\indexx$
+ \item $\indexxset$
+
+ \end{enumerate}
+ such that
+ \begin{enumerate}
+ \item\label{urysohnone_indexset_is_subset_naturals} $\indexxset[X] \subseteq \naturals$.
+ \item\label{urysohnone_index_is_bijection} $\indexx[X]$ is a bijection from $\indexxset[X]$ to $\carrier[X]$.
+ \end{enumerate}
+\end{struct}
+
+% Eine folge ist ein Funktion mit domain \subseteq Ordinal zahlen
+
+
+
+
+\begin{definition}\label{urysohnone_cahin_of_subsets}
+ $C$ is a chain of subsets iff
+ $C$ is a sequence and for all $n,m \in \indexxset[C]$ such that $n < m$ we have $\indexx[C](n) \subseteq \indexx[C](m)$.
+\end{definition}
+
+\begin{definition}\label{urysohnone_chain_of_n_subsets}
+ $C$ is a chain of $n$ subsets iff
+ $C$ is a chain of subsets and $n \in \indexxset[C]$
+ and for all $m \in \naturals$ such that $m \leq n$ we have $m \in \indexxset[C]$.
+\end{definition}
+
+
+
+% TODO: The Notion above should be generalised to sequences since we need them as well for our limit
+% and also for the subproof of continuity of the limit.
+
+
+% \begin{definition}\label{urysohnone_legal_chain}
+% $C$ is a legal chain of subsets of $X$ iff
+% $C \subseteq \pow{X}$. %and
+% %there exist $f \in \funs{C}{\naturals}$ such that
+% %for all $x,y \in C$ we have if $f(x) < f(y)$ then $x \subset y \land \closure{x} \subset \interior{y}$.
+% \end{definition}
+
+% TODO: We need a notion for declarinf new properties to existing thing.
+%
+% The following gives a example and a wish want would be nice to have:
+% "A (structure) is called (adjectiv of property), if"
+%
+% This should then be use als follows:
+% Let $X$ be a (adjectiv_1) ... (adjectiv_n) (structure_word).
+% Which should be translated to fol like this:
+% ?[X]: is_structure(X) & is_adjectiv_1(X) & ... & is_adjectiv_n(X)
+% ---------------------------------------------------------------
+
+
+
+\subsection{staircase function}
+
+\begin{definition}\label{urysohnone_minimum}
+ $\min{X} = \{x \in X \mid \forall y \in X. x \leq y \}$.
+\end{definition}
+
+\begin{definition}\label{urysohnone_maximum}
+ $\max{X} = \{x \in X \mid \forall y \in X. x \geq y \}$.
+\end{definition}
+
+\begin{definition}\label{urysohnone_intervalclosed}
+ $\intervalclosed{a}{b} = \{x \in \reals \mid a \leq x \leq b\}$.
+\end{definition}
+
+\begin{definition}\label{urysohnone_intervalopen}
+ $\intervalopen{a}{b} = \{ x \in \reals \mid a < x < b\}$.
+\end{definition}
+
+
+\begin{struct}\label{urysohnone_staircase_function}
+ A staircase function $f$ is a onesorted structure equipped with
+ \begin{enumerate}
+ \item $\chain$
+ \end{enumerate}
+ such that
+ \begin{enumerate}
+ \item \label{urysohnone_staircase_is_function} $f$ is a function to $\intervalclosed{\zero}{1}$.
+ \item \label{urysohnone_staircase_domain} $\dom{f}$ is a topological space.
+ \item \label{urysohnone_staricase_def_chain} $C$ is a chain of subsets.
+ \item \label{urysohnone_staircase_chain_is_in_domain} for all $x \in C$ we have $x \subseteq \dom{f}$.
+ \item \label{urysohnone_staircase_behavoir_index_zero} $f(\indexx[C](1))= 1$.
+ \item \label{urysohnone_staircase_behavoir_index_n} $f(\dom{f}\setminus \unions{C}) = \zero$.
+ \item \label{urysohnone_staircase_chain_indeset} There exist $n$ such that $\indexxset[C] = \seq{\zero}{n}$.
+ \item \label{urysohnone_staircase_behavoir_index_arbetrray} for all $n \in \indexxset[C]$
+ such that $n \neq \zero$ we have $f(\indexx[C](n) \setminus \indexx[C](n-1)) = \rfrac{n}{ \max{\indexxset[C]} }$.
+ \end{enumerate}
+\end{struct}
+
+\begin{definition}\label{urysohnone_legal_staircase}
+ $f$ is a legal staircase function iff
+ $f$ is a staircase function and
+ for all $n,m \in \indexxset[\chain[f]]$ such that $n \leq m$ we have $f(\indexx[\chain[f]](n)) \leq f(\indexx[\chain[f]](m))$.
+\end{definition}
+
+\begin{abbreviation}\label{urysohnone_urysohnspace}
+ $X$ is a urysohn space iff
+ $X$ is a topological space and
+ for all $A,B \in \closeds{X}$ such that $A \inter B = \emptyset$
+ we have there exist $A',B' \in \opens[X]$
+ such that $A \subseteq A'$ and $B \subseteq B'$ and $A' \inter B' = \emptyset$.
+\end{abbreviation}
+
+\begin{definition}\label{urysohnone_urysohnchain}
+ $C$ is a urysohnchain in $X$ of cardinality $k$ iff %<---- TODO: cardinality unused!
+ $C$ is a chain of subsets and
+ for all $A \in C$ we have $A \subseteq X$ and
+ for all $n,m \in \indexxset[C]$ such that $n < m$ we have $\closure{\indexx[C](n)}{X} \subseteq \interior{\indexx[C](m)}{X}$.
+\end{definition}
+
+\begin{definition}\label{urysohnone_urysohnchain_without_cardinality}
+ $C$ is a urysohnchain in $X$ iff
+ $C$ is a chain of subsets and
+ for all $A \in C$ we have $A \subseteq X$ and
+ for all $n,m \in \indexxset[C]$ such that $n < m$ we have $\closure{\indexx[C](n)}{X} \subseteq \interior{\indexx[C](m)}{X}$.
+\end{definition}
+
+\begin{abbreviation}\label{urysohnone_infinte_sequence}
+ $S$ is a infinite sequence iff $S$ is a sequence and $\indexxset[S]$ is infinite.
+\end{abbreviation}
+
+\begin{definition}\label{urysohnone_infinite_product}
+ $X$ is the infinite product of $Y$ iff
+ $X$ is a infinite sequence and for all $i \in \indexxset[X]$ we have $\indexx[X](i) = Y$.
+\end{definition}
+
+\begin{definition}\label{urysohnone_refinmant}
+ $C'$ is a refinmant of $C$ iff $C'$ is a urysohnchain in $X$
+ and for all $x \in C$ we have $x \in C'$
+ and for all $y \in C$ such that $y \subset x$ we have there exist $c \in C'$ such that $y \subset c \subset x$
+ and for all $g \in C'$ such that $g \neq c$ we have not $y \subset g \subset x$.
+\end{definition}
+
+\begin{abbreviation}\label{urysohnone_two}
+ $\two = \suc{1}$.
+\end{abbreviation}
+
+\begin{lemma}\label{urysohnone_two_in_reals}
+ $\two \in \reals$.
+\end{lemma}
+
+\begin{lemma}\label{urysohnone_two_in_naturals}
+ $\two \in \naturals$.
+\end{lemma}
+
+\begin{inductive}\label{urysohnone_power_of_two}
+ Define $\powerOfTwoSet \subseteq (\naturals \times \naturals)$.
+ \begin{enumerate}
+ \item $(\zero, 1) \in \powerOfTwoSet$.
+ \item If $(m,k) \in \powerOfTwoSet$, then $(m+1, k \rmul \two) \in \powerOfTwoSet$.
+ \end{enumerate}
+\end{inductive}
+
+\begin{abbreviation}\label{urysohnone_pot}
+ $\pot = \powerOfTwoSet$.
+\end{abbreviation}
+
+\begin{lemma}\label{urysohnone_dom_pot}
+ $\dom{\pot} = \naturals$.
+\end{lemma}
+\begin{proof}
+ Omitted.
+\end{proof}
+
+\begin{lemma}\label{urysohnone_ran_pot}
+ $\ran{\pot} \subseteq \naturals$.
+\end{lemma}
+
+
+\begin{axiom}\label{urysohnone_pot1}
+ $\pot \in \funs{\naturals}{\naturals}$.
+\end{axiom}
+
+\begin{axiom}\label{urysohnone_pot2}
+ For all $n \in \naturals$ we have there exist $k\in \naturals$ such that $(n, k) \in \powerOfTwoSet$ and $\apply{\pot}{n}=k$.
+ %$\pot(n) = k$ iff there exist $x \in \powerOfTwoSet$ such that $x = (n,k)$.
+\end{axiom}
+
+
+%Without this abbreviation \pot cant be sed as a function in the standard sense
+\begin{abbreviation}\label{urysohnone_pot_as_function}
+ $\pot(n) = \apply{\pot}{n}$.
+\end{abbreviation}
+
+%Take all points, besids one but then take all open sets not containing x but all other, so \{x\} has to be closed
+\begin{axiom}\label{urysohnone_hausdorff_implies_singltons_closed}
+ For all $X$ such that $X$ is Hausdorff we have
+ for all $x \in \carrier[X]$ we have $\{x\}$ is closed in $X$.
+\end{axiom}
+
+
+\begin{lemma}\label{urysohnone_urysohn_set_in_between}
+ Let $X$ be a urysohn space.
+ Suppose $A,B \in \closeds{X}$.
+ Suppose $A \subset B$.
+ %Suppose $B \union A \neq \carrier[X]$.
+ There exist $C \in \closeds{X}$
+ such that $A \subset C \subset B$ or $A, B \in \opens[X]$.
+\end{lemma}
+\begin{proof}
+ We have $B \setminus A$ is inhabited.
+ Take $x$ such that $x \in (B \setminus A)$.
+ Then $A \subset (A \union \{x\})$.
+ Let $C = \closure{A \union \{x\}}{X}$.
+ We have $(A \union \{x\}) \subseteq \closure{A \union \{x\}}{X}$.
+ Therefore $A \subset C$.
+ $A \subseteq B \subseteq \carrier[X]$.
+ $x \in B$.
+ Therefore $x \in \carrier[X]$.
+ $(A \union \{x\}) \subseteq \carrier[X]$.
+ We have $\closure{A \union \{x\}}{X}$ is closed in $X$ by \cref{closure_is_closed}.
+ Therefore $C$ is closed in $X$ by \cref{closure_is_closed}.
+ \begin{byCase}
+ \caseOf{$C = B$.}
+ %We have $\carrier[X] \setminus A$ is open in $X$.
+ %We have $\carrier[X] \setminus B$ is open in $X$.
+ %$\{x\}$ is closed in $X$.% by \cref{hausdorff_implies_singltons_closed}.
+ %$A \union \{x\} = C$.
+ %$\carrier[X] \setminus (A \union \{x\}) = (\carrier[X] \setminus C)$.
+ %$\carrier[X] \setminus (A) = \{x\} \union (\carrier[X] \setminus C)$.
+
+
+ %Therefore $\{x\}$ is open in $X$.
+ Omitted.
+ \caseOf{$C \neq B$.}
+ Omitted.
+ \end{byCase}
+
+\end{proof}
+
+
+\begin{proposition}\label{urysohnone_urysohnchain_induction_begin}
+ Let $X$ be a urysohn space.
+ Suppose $A,B \in \closeds{X}$.
+ Suppose $A \inter B$ is empty.
+ Then there exist $U$
+ such that $\carrier[U] = \{A,(\carrier[X] \setminus B)\}$
+ and $\indexxset[U]= \{\zero, 1\}$
+ and $\indexx[U](\zero) = A$
+ and $\indexx[U](1) = (\carrier[X] \setminus B)$.
+ %$U$ is a urysohnchain in $X$.
+\end{proposition}
+\begin{proof}
+
+ Omitted.
+
+ % We show that $U$ is a sequence.
+ % \begin{subproof}
+ % Omitted.
+ % \end{subproof}
+%
+ % We show that $A \subseteq (\carrier[X] \setminus B)$.
+ % \begin{subproof}
+ % Omitted.
+ % \end{subproof}
+%
+ % We show that $U$ is a chain of subsets.
+ % \begin{subproof}
+ % For all $n \in \indexxset[U]$ we have $n = \zero \lor n = 1$.
+ % It suffices to show that for all $n \in \indexxset[U]$ we have
+ % for all $m \in \indexxset[U]$ such that
+ % $n < m$ we have $\indexx[U](n) \subseteq \indexx[U](m)$.
+ % Fix $n \in \indexxset[U]$.
+ % Fix $m \in \indexxset[U]$.
+ % \begin{byCase}
+ % \caseOf{$n = 1$.} Trivial.
+ % \caseOf{$n = \zero$.}
+ % \begin{byCase}
+ % \caseOf{$m = \zero$.} Trivial.
+ % \caseOf{$m = 1$.} Omitted.
+ % \end{byCase}
+ % \end{byCase}
+ % \end{subproof}
+%
+ % $A \subseteq X$.
+ % $(X \setminus B) \subseteq X$.
+ % We show that for all $x \in U$ we have $x \subseteq X$.
+ % \begin{subproof}
+ % Omitted.
+ % \end{subproof}
+%
+ % We show that $\closure{A}{X} \subseteq \interior{(X \setminus B)}{X}$.
+ % \begin{subproof}
+ % Omitted.
+ % \end{subproof}
+ % We show that for all $n,m \in \indexxset[U]$ such that $n < m$ we have
+ % $\closure{\indexx[U](n)}{X} \subseteq \interior{\indexx[U](m)}{X}$.
+ % \begin{subproof}
+ % Omitted.
+ % \end{subproof}
+
+
+\end{proof}
+
+\begin{proposition}\label{urysohnone_urysohnchain_induction_begin_step_two}
+ Let $X$ be a urysohn space.
+ Suppose $A,B \in \closeds{X}$.
+ Suppose $A \inter B$ is empty.
+ Suppose there exist $U$
+ such that $\carrier[U] = \{A,(\carrier[X] \setminus B)\}$
+ and $\indexxset[U]= \{\zero, 1\}$
+ and $\indexx[U](\zero) = A$
+ and $\indexx[U](1) = (\carrier[X] \setminus B)$.
+ Then $U$ is a urysohnchain in $X$.
+\end{proposition}
+\begin{proof}
+ Omitted.
+\end{proof}
+
+
+
+\begin{proposition}\label{urysohnone_t_four_propositon}
+ Let $X$ be a urysohn space.
+ Then for all $A,B \subseteq X$ such that $\closure{A}{X} \subseteq \interior{B}{X}$
+ we have there exists $C \subseteq X$ such that
+ $\closure{A}{X} \subseteq \interior{C}{X} \subseteq \closure{C}{X} \subseteq \interior{B}{X}$.
+\end{proposition}
+\begin{proof}
+ Omitted.
+\end{proof}
+
+
+
+\begin{proposition}\label{urysohnone_urysohnchain_induction_step_existence}
+ Let $X$ be a urysohn space.
+ Suppose $U$ is a urysohnchain in $X$.
+ Then there exist $U'$ such that $U'$ is a refinmant of $U$ and $U'$ is a urysohnchain in $X$.
+\end{proposition}
+\begin{proof}
+ % U = ( A_{0}, A_{1}, A_{2}, ... , A_{n-1}, A_{n})
+ % U' = ( A_{0}, A'_{1}, A_{1}, A'_{2}, A_{2}, ... A_{n-1}, A'_{n}, A_{n})
+
+ % Let $m = \max{\indexxset[U]}$.
+ % For all $n \in (\indexxset[U] \setminus \{m\})$ we have there exist $C \subseteq X$
+ % such that $\closure{\indexx[U](n)}{X} \subseteq \interior{C}{X} \subseteq \closure{C}{X} \subseteq \interior{\indexx[U](n+1)}{X}$.
+
+
+ %\begin{definition}\label{urysohnone_refinmant}
+ % $C'$ is a refinmant of $C$ iff for all $x \in C$ we have $x \in C'$ and
+ % for all $y \in C$ such that $y \subset x$
+ % we have there exist $c \in C'$ such that $y \subset c \subset x$
+ % and for all $g \in C'$ such that $g \neq c$ we have not $y \subset g \subset x$.
+ %\end{definition}
+ Omitted.
+
+\end{proof}
+
+
+
+
+
+\begin{proposition}\label{urysohnone_existence_of_staircase_function}
+ Let $X$ be a urysohn space.
+ Suppose $U$ is a urysohnchain in $X$ and $U$ has cardinality $k$.
+ Suppose $k \neq \zero$.
+ Then there exist $f$ such that $f \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}}$
+ and for all $n \in \indexxset[U]$ we have for all $x \in \indexx[U](n)$
+ we have $f(x) = \rfrac{n}{k}$.
+\end{proposition}
+\begin{proof}
+ Omitted.
+\end{proof}
+
+\begin{abbreviation}\label{urysohnone_refinment_abbreviation}
+ $x \refine y$ iff $x$ is a refinmant of $y$.
+\end{abbreviation}
+
+
+
+
+
+\begin{abbreviation}\label{urysohnone_sequence_of_functions}
+ $f$ is a sequence of functions iff $f$ is a sequence
+ and for all $g \in \carrier[f]$ we have $g$ is a function.
+\end{abbreviation}
+
+\begin{abbreviation}\label{urysohnone_sequence_in_reals}
+ $s$ is a sequence of real numbers iff $s$ is a sequence
+ and for all $r \in \carrier[s]$ we have $r \in \reals$.
+\end{abbreviation}
+
+
+
+\begin{axiom}\label{urysohnone_abs_behavior1}
+ If $x \geq \zero$ then $\abs{x} = x$.
+\end{axiom}
+
+\begin{axiom}\label{urysohnone_abs_behavior2}
+ If $x < \zero$ then $\abs{x} = \neg{x}$.
+\end{axiom}
+
+\begin{abbreviation}\label{urysohnone_converge}
+ $s$ converges iff $s$ is a sequence of real numbers
+ and $\indexxset[s]$ is infinite
+ and for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have
+ there exist $N \in \indexxset[s]$ such that
+ for all $m \in \indexxset[s]$ such that $m > N$
+ we have $\abs{\indexx[s](N) - \indexx[s](m)} < \epsilon$.
+\end{abbreviation}
+
+
+\begin{definition}\label{urysohnone_limit_of_sequence}
+ $x$ is the limit of $s$ iff $s$ is a sequence of real numbers
+ and $x \in \reals$ and
+ for all $\epsilon \in \reals$ such that $\epsilon > \zero$
+ we have there exist $n \in \indexxset[s]$ such that
+ for all $m \in \indexxset[s]$ such that $m > n$
+ we have $\abs{x - \indexx[s](n)} < \epsilon$.
+\end{definition}
+
+\begin{proposition}\label{urysohnone_existence_of_limit}
+ Let $s$ be a sequence of real numbers.
+ Then $s$ converges iff there exist $x \in \reals$
+ such that $x$ is the limit of $s$.
+\end{proposition}
+\begin{proof}
+ Omitted.
+\end{proof}
+
+\begin{definition}\label{urysohnone_limit_sequence}
+ $x$ is the limit sequence of $f$ iff
+ $x$ is a sequence and $\indexxset[x] = \dom{f}$ and
+ for all $n \in \indexxset[x]$ we have
+ $\indexx[x](n) = f(n)$.
+\end{definition}
+
+\begin{definition}\label{urysohnone_realsminus}
+ $\realsminus = \{r \in \reals \mid r < \zero\}$.
+\end{definition}
+
+\begin{abbreviation}\label{urysohnone_realsplus}
+ $\realsplus = \reals \setminus \realsminus$.
+\end{abbreviation}
+
+\begin{proposition}\label{urysohnone_intervalclosed_subseteq_reals}
+ Suppose $a,b \in \reals$.
+ Suppose $a < b$.
+ Then $\intervalclosed{a}{b} \subseteq \reals$.
+\end{proposition}
+
+
+
+\begin{lemma}\label{urysohnone_fraction1}
+ Let $x \in \reals$.
+ Then for all $y \in \reals$ such that $x \neq y$ we have there exists $r \in \rationals$ such that $y < r < x$ or $x < r < y$.
+\end{lemma}
+\begin{proof}
+ Omitted.
+\end{proof}
+
+\begin{lemma}\label{urysohnone_frection2}
+ Suppose $a,b \in \reals$.
+ Suppose $a < b$.
+ Then $\intervalopen{a}{b}$ is infinite.
+\end{lemma}
+\begin{proof}
+ Omitted.
+\end{proof}
+
+\begin{lemma}\label{urysohnone_frection3}
+ Suppose $a \in \reals$.
+ Suppose $a < \zero$.
+ Then there exist $N \in \naturals$ such that for all $N' \in \naturals$ such that $N' > N$ we have $\zero < \rfrac{1}{\pot(N')} < a$.
+\end{lemma}
+\begin{proof}
+ Omitted.
+\end{proof}
+
+\begin{proposition}\label{urysohnone_fraction4}
+ Suppose $a,b,\epsilon \in \reals$.
+ Suppose $\epsilon > \zero$.
+ $\abs{a - b} < \epsilon$ iff $b \in \intervalopen{(a - \epsilon)}{(a + \epsilon)}$.
+\end{proposition}
+\begin{proof}
+ Omitted.
+\end{proof}
+
+\begin{proposition}\label{urysohnone_fraction5}
+ Suppose $a,b,\epsilon \in \reals$.
+ Suppose $\epsilon > \zero$.
+ $b \in \intervalopen{(a - \epsilon)}{(a + \epsilon)}$ iff $a \in \intervalopen{(b - \epsilon)}{(b + \epsilon)}$.
+\end{proposition}
+\begin{proof}
+ Omitted.
+\end{proof}
+
+\begin{proposition}\label{urysohnone_fraction6}
+ Suppose $a,\epsilon \in \reals$.
+ Suppose $\epsilon > \zero$.
+ $\intervalopen{(a - \epsilon)}{(a + \epsilon)} = \{r \in \reals \mid (a - \epsilon) < r < (a + \epsilon)\} $.
+\end{proposition}
+
+\begin{abbreviation}\label{urysohnone_epsilonball}
+ $\epsBall{a}{\epsilon} = \intervalopen{(a - \epsilon)}{(a + \epsilon)}$.
+\end{abbreviation}
+
+\begin{proposition}\label{urysohnone_fraction7}
+ Suppose $a,\epsilon \in \reals$.
+ Suppose $\epsilon > \zero$.
+ Then there exist $b \in \rationals$ such that $b \in \epsBall{a}{\epsilon}$.
+\end{proposition}
+\begin{proof}
+ Omitted.
+\end{proof}
+
+
+
+
+%\begin{definition}\label{urysohnone_sequencetwo}
+% $Z$ is a sequencetwo iff $Z = (N,f,B)$ and $N \subseteq \naturals$ and $f$ is a bijection from $N$ to $B$.
+%\end{definition}
+%
+%\begin{proposition}\label{urysohnone_sequence_existence}
+% Suppose $N \subseteq \naturals$.
+% Suppose $M \subseteq \naturals$.
+% Suppose $N = M$.
+% Then there exist $Z,f$ such that $f$ is a bijection from $N$ to $M$ and $Z=(N,f,M)$ and $Z$ is a sequencetwo.
+%\end{proposition}
+%\begin{proof}
+% Let $f(x) = x$ for $x \in N$.
+% Let $Z=(N,f,M)$.
+%\end{proof}
+%The proposition above and the definition prove false together with
+% ordinal_subseteq_unions, omega_is_an_ordinal, powerset_intro, in_irrefl
+
+
+
+
+
+
+
+
+
+\begin{theorem}\label{urysohnone_urysohn1}
+ Let $X$ be a urysohn space.
+ Suppose $A,B \in \closeds{X}$.
+ Suppose $A \inter B$ is empty.
+ Suppose $\carrier[X]$ is inhabited.
+ There exist $f$ such that $f \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}}$
+ and $f(A) = \zero$ and $f(B)= 1$ and $f$ is continuous.
+\end{theorem}
+\begin{proof}
+
+ There exist $\eta$ such that $\carrier[\eta] = \{A, (\carrier[X] \setminus B)\}$
+ and $\indexxset[\eta] = \{\zero, 1\}$
+ and $\indexx[\eta](\zero) = A$
+ and $\indexx[\eta](1) = (\carrier[X] \setminus B)$ by \cref{urysohnone_urysohnchain_induction_begin}.
+
+ We show that there exist $\zeta$ such that $\zeta$ is a sequence
+ and $\indexxset[\zeta] = \naturals$
+ and $\eta \in \carrier[\zeta]$ and $\indexx[\zeta](\eta) = \zero$
+ and for all $n \in \indexxset[\zeta]$ we have $n+1 \in \indexxset[\zeta]$
+ and $\indexx[\zeta](n+1)$ is a refinmant of $\indexx[\zeta](n)$.
+ \begin{subproof}
+ %Let $\alpha = \{x \in C \mid \exists y \in \alpha. x \refine y \lor x = \eta\}$.
+ %Let $\beta = \{ (n,x) \mid n \in \naturals \mid \exists m \in \naturals. \exists y \in \alpha. (x \in \alpha) \land ((x \refine y \land m = n+1 )\lor ((n,x) = (\zero,\eta)))\}$.
+ %
+ % % TODO: Proof that \beta is a function which would be used for the indexing.
+ %For all $n \in \naturals$ we have there exist $x \in \alpha$ such that $(n,x) \in \beta$.
+ %$\dom{\beta} = \naturals$.
+ %$\ran{\beta} = \alpha$.
+ %$\beta \in \funs{\naturals}{\alpha}$.
+ %Take $\zeta$ such that $\carrier[\zeta] = \alpha$ and $\indexxset[\zeta] = \naturals$ and $\indexx[\zeta] = \beta$.
+ Omitted.
+ \end{subproof}
+
+ Let $\alpha = \carrier[X]$.
+ %Define $f : \alpha \to \naturals$ such that $f(x) =$
+ %\begin{cases}
+ % & 1 & \text{if} x \in A \lor x \in B
+ % & k & \text{if} \exists k \in \naturals
+ %\end{cases}
+%
+ %We show that there exist $k \in \funs{\carrier[X]}{\reals}$ such that
+ %$k(x)$
+
+ %For all $n \in \naturals$ we have $\indexx[\zeta](n)$ is a urysohnchain in $X$.
+
+ We show that for all $n \in \indexxset[\zeta]$ we have $\indexx[\zeta](n)$ has cardinality $\pot(n)$.
+ \begin{subproof}
+ Omitted.
+ \end{subproof}
+
+ We show that for all $m \in \indexxset[\zeta]$ we have $\pot(m) \neq \zero$.
+ \begin{subproof}
+ Omitted.
+ \end{subproof}
+
+ We show that for all $m \in \naturals$ we have $\pot(m) \in \naturals$.
+ \begin{subproof}
+ Omitted.
+ \end{subproof}
+
+
+% We show that for all $m \in \indexxset[\zeta]$ we have there exist $f$ such that $f \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}}$
+% and for all $n \in \indexxset[\indexx[\zeta](m)]$ we have for all $x \in \indexx[\indexx[\zeta](m)](n)$ such that $x \notin \indexx[\indexx[\zeta](m)](n-1)$
+% we have $f(x) = \rfrac{n}{\pot(m)}$.
+% \begin{subproof}
+% Fix $m \in \indexxset[\zeta]$.
+% %$\indexx[\zeta](m)$ is a urysohnchain in $X$.
+%
+% %Define $o : \alpha \to \intervalclosed{\zero}{1}$ such that $o(x) =$
+% %\begin{cases}
+% % & 0 & \text{if} x \in A
+% % & 1 & \text{if} x \in B
+% % & \rfrac{n}{m} & \text{if} \exists n \in \naturals. x \in \indexx[\indexx[\zeta](m)](n) \land x \notin \indexx[\indexx[\zeta](m)](n-1)
+% %\end{cases}
+%%
+% Omitted.
+% \end{subproof}
+%
+%
+%
+% %The sequenc of the functions
+% Let $\gamma = \{
+% (n,f) \mid
+% n \in \naturals \mid
+%
+% \forall n' \in \indexxset[\indexx[\zeta](n)].
+% \forall x \in \carrier[X].
+%
+%
+% f \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}} \land
+%
+%
+% % (n,f) \in \gamma <=> \phi(n,f)
+% % with \phi (n,f) :=
+% % (x \in (A_k) \ (A_k-1)) ==> f(x) = ( k / 2^n )
+% % \/ (x \notin A_k for all k \in {1,..,n} ==> f(x) = 1
+%
+% ( (n' = \zero)
+% \land (x \in \indexx[\indexx[\zeta](n)](n'))
+% \land (f(x)= \zero) )
+%
+% \lor
+%
+% ( (n' > \zero)
+% \land (x \in \indexx[\indexx[\zeta](n)](n'))
+% \land (x \notin \indexx[\indexx[\zeta](n)](n'-1))
+% \land (f(x) = \rfrac{n'}{\pot(n)}) )
+%
+% \lor
+%
+% ( (x \notin \indexx[\indexx[\zeta](n)](n'))
+% \land (f(x) = 1) )
+%
+% \}$.
+%
+% Let $\gamma(n) = \apply{\gamma}{n}$ for $n \in \naturals$.
+%
+% We show that for all $n \in \naturals$ we have $\gamma(n)$
+% is a function from $\carrier[X]$ to $\reals$.
+% \begin{subproof}
+% Omitted.
+% \end{subproof}
+%
+%
+% We show that for all $n \in \naturals$ we have $\gamma(n)$
+% is a function from $\carrier[X]$ to $\intervalclosed{\zero}{1}$.
+% \begin{subproof}
+% Omitted.
+% \end{subproof}
+%
+% We show that $\gamma$ is a function from $\naturals$ to $\reals$.
+% \begin{subproof}
+% Omitted.
+% \end{subproof}
+%
+% We show that for all $x,k,n$ such that $n\in \naturals$ and $k \in \naturals$ and $x \in \indexx[\indexx[\zeta](n)](k)$ we have $\apply{\gamma(n)}{x} = \rfrac{k}{\pot(n)}$.
+% \begin{subproof}
+% Omitted.
+% \end{subproof}
+%
+% We show that for all $n \in \naturals$ for all $x \in \carrier[X]$ we have $\apply{\gamma(n)}{x} \in \intervalclosed{\zero}{1}$.
+% \begin{subproof}
+% Fix $n \in \naturals$.
+% Fix $x \in \carrier[X]$.
+% Omitted.
+% \end{subproof}
+%
+%
+%
+% We show that
+% if $h$ is a function from $\naturals$ to $\reals$ and for all $n \in \naturals$ we have $h(n) \leq h(n+1)$ and there exist $B \in \reals$ such that $h(n) < B$
+% then there exist $k \in \reals$ such that for all $m \in \naturals$ we have $h(m) \leq k$ and for all $k' \in \reals$ such that $k' < k$ we have there exist $M \in \naturals$ such that $k' < h(M)$.
+% \begin{subproof}
+% Omitted.
+% \end{subproof}
+%
+%
+%
+% We show that there exist $g$ such that for all $x \in \carrier[X]$ we have there exist $k \in \reals$ such that $g(x)= k$ and for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have there exist $N \in \naturals$ such that for all $N' \in \naturals$ such that $N' > N$ we have $\abs{\apply{\gamma(N')}{x} - k} < \epsilon$.
+% \begin{subproof}
+% We show that for all $x \in \carrier[X]$ we have there exist $k \in \reals$ such that for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have there exist $N \in \naturals$ such that for all $N' \in \naturals$ such that $N' > N$ we have $\abs{\apply{\gamma(N')}{x} - k} < \epsilon$.
+% \begin{subproof}
+% Fix $x \in \carrier[X]$.
+%
+% Omitted.
+%
+% % Contradiction by \cref{two_in_naturals,function_apply_default,reals_axiom_zero_in_reals,dom_emptyset,notin_emptyset,funs_type_apply,neg,minus,abs_behavior1}.
+% %Follows by \cref{two_in_naturals,function_apply_default,reals_axiom_zero_in_reals,dom_emptyset,notin_emptyset,funs_type_apply,neg,minus,abs_behavior1}.
+% \end{subproof}
+% Omitted.
+% \end{subproof}
+%
+%
+% Let $G(x) = g(x)$ for $x \in \carrier[X]$.
+% We have $\dom{G} = \carrier[X]$.
+%
+% We show that for all $x \in \dom{G}$ we have $G(x) \in \reals$.
+% \begin{subproof}
+% %Fix $x \in \dom{G}$.
+% %It suffices to show that $g(x) \in \reals$.
+%%
+% %There exist $k \in \reals$ such that for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have there exist $N \in \naturals$ such that for all $N' \in \naturals$ such that $N' > N$ we have $\abs{\apply{\gamma(N')}{x} - k} < \epsilon$.
+%%
+% %We show that for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have there exist $N \in \naturals$ such that for all $N' \in \naturals$ such that $N' > N$ we have $\abs{\apply{\gamma(N')}{x} - g(x)} < \epsilon$ and $g(x)= k$.
+% %\begin{subproof}
+% % Fix $\epsilon \in \reals$.
+% %
+%%
+% %\end{subproof}
+% %Follows by \cref{apply,plus_one_order,ordinal_iff_suc_ordinal,natural_number_is_ordinal,subseteq,naturals_subseteq_reals,naturals_is_equal_to_two_times_naturals,reals_one_bigger_zero,one_in_reals,ordinal_prec_trichotomy,omega_is_an_ordinal,suc_intro_self,two_in_naturals,in_asymmetric,suc}.
+% Omitted.
+% \end{subproof}
+%
+% We show that for all $x \in \dom{G}$ we have $\zero \leq G(x) \leq 1$.
+% \begin{subproof}
+% %Fix $x \in \dom{G}$.
+% %Then $x \in \carrier[X]$.
+% %\begin{byCase}
+% % \caseOf{$x \in A$.}
+% % For all $n \in \naturals$ we have $\apply{\gamma(n)}{x} = \zero$.
+%%
+%%
+% % \caseOf{$x \notin A$.}
+% % \begin{byCase}
+% % \caseOf{$x \in B$.}
+% % For all $n \in \naturals$ we have $\apply{\gamma(n)}{x} = 1$.
+%%
+% % \caseOf{$x \notin B$.}
+% % Omitted.
+% % \end{byCase}
+% %\end{byCase}
+% Omitted.
+% \end{subproof}
+%
+%
+% We show that $G \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}}$.
+% \begin{subproof}
+% %It suffices to show that $\ran{G} \subseteq \intervalclosed{\zero}{1}$ by \cref{fun_ran_iff,funs_intro,funs_weaken_codom}.
+% %It suffices to show that for all $x \in \dom{G}$ we have $G(x) \in \intervalclosed{\zero}{1}$.
+% %Fix $x \in \dom{G}$.
+% %Then $x \in \carrier[X]$.
+% %$g(x) = G(x)$.
+% %We have $G(x) \in \reals$.
+% %$\zero \leq G(x) \leq 1$.
+% %We have $G(x) \in \intervalclosed{\zero}{1}$ .
+% Omitted.
+% \end{subproof}
+%
+% We show that $G(A) = \zero$.
+% \begin{subproof}
+% Omitted.
+% \end{subproof}
+%
+% We show that $G(B) = 1$.
+% \begin{subproof}
+% Omitted.
+% \end{subproof}
+%
+% We show that $G$ is continuous.
+% \begin{subproof}
+% Omitted.
+% \end{subproof}
+%
+% %Suppose $\eta$ is a urysohnchain in $X$.
+% %Suppose $\carrier[\eta] =\{A, (X \setminus B)\}$
+% %and $\indexxset[\eta] = \{\zero, 1\}$
+% %and $\indexx[\eta](\zero) = A$
+% %and $\indexx[\eta](1) = (X \setminus B)$.
+%
+%
+% %Then $\eta$ is a urysohnchain in $X$.
+%
+% % Take $P$ such that $P$ is a infinite sequence and $\indexxset[P] = \naturals$ and for all $i \in \indexxset[P]$ we have $\indexx[P](i) = \pow{X}$.
+% %
+% % We show that there exist $\zeta$ such that $\zeta$ is a infinite sequence
+% % and for all $i \in \indexxset[\zeta]$ we have
+% % $\indexx[\zeta](i)$ is a urysohnchain in $X$ of cardinality $i$
+% % and $A \subseteq \indexx[\zeta](i)$
+% % and $\indexx[\zeta](i) \subseteq (X \setminus B)$
+% % and for all $j \in \indexxset[\zeta]$ such that
+% % $j < i$ we have for all $x \in \indexx[\zeta](j)$ we have $x \in \indexx[\zeta](i)$.
+% % \begin{subproof}
+% % Omitted.
+% % \end{subproof}
+% %
+% %
+% %
+ %
+ %
+ %
+ %
+ %
+ % We show that there exist $g \in \funs{X}{\intervalclosed{\zero}{1}}$ such that $g(A)=1$ and $g(X\setminus A) = \zero$.
+ % \begin{subproof}
+ % Omitted.
+ % \end{subproof}
+ % $g$ is a staircase function and $\chain[g] = C$.
+ % $g$ is a legal staircase function.
+ %
+ %
+ % We show that there exist $f$ such that $f \in \funs{X}{\intervalclosed{\zero}{1}}$
+ % and $f(A) = 1$ and $f(B)= 0$ and $f$ is continuous.
+ % \begin{subproof}
+ % Omitted.
+ % \end{subproof}
+
+
+ % We show that for all $n \in \nautrals$ we have $C_{n}$ a legal chain of subsets of $X$.
+ % \begin{subproof}
+ % Omitted.
+ % \end{subproof}
+
+ % Proof Sheme Idea:
+ % -We proof for n=1 that C_{n} is a chain and legal
+ % -Then by induction with P(n+1) is refinmant of P(n)
+ % -Therefore we have a increing refinmant of these Chains such that our limit could even apply
+ % ---------------------------------------------------------
+
+ % We show that there exist $f \in \funs{\naturals}{\funs{X}{\intervalclosed{0}{1}}}$ such that $f(n)$ is a staircase function. %TODO: Define Staircase function
+ % \begin{subproof}
+ % Omitted.
+ % \end{subproof}
+
+
+ % Formalization idea of enumarted sequences:
+ % - Define a enumarted sequnecs as a set A with a bijection between A and E \in \pow{\naturals}
+ % - This should give all finite and infinte enumarable sequences
+ % - Introduce a notion for the indexing of these enumarable sequences.
+ % - Then we can define the limit of a enumarted sequence of functions.
+ % ---------------------------------------------------------
+ %
+ % Here we need a limit definition for sequences of functions
+ % We show that there exist $F \in \funs{X}{\intervalclosed{0}{1}}$ such that $F = \limit{set of the staircase functions}$
+ % \begin{subproof}
+ % Omitted.
+ % \end{subproof}
+ %
+ % We show that $F(A) = 1$.
+ % \begin{subproof}
+ % Omitted.
+ % \end{subproof}
+ %
+ % We show that $F(B) = 0$.
+ % \begin{subproof}
+ % Omitted.
+ % \end{subproof}
+ %
+ % We show that $F$ is continuous.
+ % \begin{subproof}
+ % Omitted.
+ % \end{subproof}
+\end{proof}
+%
+%\begin{theorem}\label{urysohnone_safe}
+% Contradiction.
+%\end{theorem}