summaryrefslogtreecommitdiff
path: root/library/topology/urysohn2.tex
diff options
context:
space:
mode:
Diffstat (limited to 'library/topology/urysohn2.tex')
-rw-r--r--library/topology/urysohn2.tex20
1 files changed, 18 insertions, 2 deletions
diff --git a/library/topology/urysohn2.tex b/library/topology/urysohn2.tex
index ad3f1d7..c0b46c4 100644
--- a/library/topology/urysohn2.tex
+++ b/library/topology/urysohn2.tex
@@ -156,6 +156,7 @@
$\dom{U_0} = N$.
$\dom{U_0} \subseteq \naturals$ by \cref{ran_converse}.
$U_0$ is a sequence.
+ We have $1, \zero \in N$.
We show that $U_0$ is a chain of subsets in $X$.
\begin{subproof}
We have $\dom{U_0} \subseteq \naturals$.
@@ -163,9 +164,24 @@
We have $\dom{U_0} = \{\zero, 1\}$.
It suffices to show that for all $n \in \dom{U_0}$ we have for all $m \in \dom{U_0}$ such that $m > n$ we have $\at{U_0}{n} \subseteq \at{U_0}{m}$.
+
+ Fix $n \in \dom{U_0}$.
+ Fix $m \in \dom{U_0}$.
+
+ \begin{byCase}
+ \caseOf{$n \neq \zero$.}
+ Trivial.
+ \caseOf{$n = \zero$.}
+ \begin{byCase}
+ \caseOf{$m = \zero$.}
+ Trivial.
+ \caseOf{$m \neq \zero$.}
+ We have $A \subseteq A'$.
+ We have $\at{U_0}{\zero} = A$ by assumption.
+ We have $\at{U_0}{1}= A'$ by assumption.
+ \end{byCase}
+ \end{byCase}
- It suffices to show that $\at{U_0}{\zero} \subseteq \at{U_0}{1}$.
- Follows by \cref{one_in_reals,order_reals_lemma0,upair_elim,reals_one_bigger_zero,reals_order,reals_axiom_zero_in_reals,subseteq_refl,apply}.
\end{subproof}
$U_0$ is a urysohnchain of $X$.