summaryrefslogtreecommitdiff
path: root/library/topology/urysohn2.tex
diff options
context:
space:
mode:
Diffstat (limited to 'library/topology/urysohn2.tex')
-rw-r--r--library/topology/urysohn2.tex56
1 files changed, 54 insertions, 2 deletions
diff --git a/library/topology/urysohn2.tex b/library/topology/urysohn2.tex
index a3f3ea4..d08d507 100644
--- a/library/topology/urysohn2.tex
+++ b/library/topology/urysohn2.tex
@@ -98,20 +98,68 @@
\begin{proposition}\label{naturals_elem_in_transitive}
If $n \in \naturals$ then $n$ is \in-transitive and every element of $n$ is \in-transitive.
%If $n$ is a natural number then $n$ is \in-transitive and every element of $n$ is \in-transitive.
-
\end{proposition}
-\begin{proposition}\label{seq_zero_to_n_isomorph_to_n}
+\begin{proposition}\label{zero_is_in_minimal}
+ $\zero$ is an \in-minimal element of $\naturals$.
+\end{proposition}
+
+\begin{proposition}\label{seq_zero_to_n_isomorph_to_suc_n}
For all $n \in \naturals$ we have $\seq{\zero}{n}$ has cardinality $\suc{n}$.
\end{proposition}
\begin{proof} [Proof by \in-induction on $n$]
Assume $n \in \naturals$.
+ For all $m \in n$ we have $m \in \naturals$.
+ \begin{byCase}
+ \caseOf{$n = \zero$.}
+ It suffices to show that $1 = \seq{\zero}{\zero}$.
+ Follows by set extensionality.
+ \caseOf{$n \neq \zero$.}
+ Take $k$ such that $k \in \naturals$ and $\suc{k} = n$.
+ Then $k \in n$.
+ Therefore $\seq{\zero}{k}$ has cardinality $\suc{k}$.
+ Now $\seq{\zero}{k}$ has cardinality $n$.
+ Take $f$ such that $f$ is a bijection from $n$ to $\seq{\zero}{k}$.
+ We have $\suc{n} = n \union \{n\}$.
+ We show that $\seq{\zero}{n} = \seq{\zero}{k} \union \{\suc{k}\}$.
+ \begin{subproof}
+ We show that $\seq{\zero}{n} \subseteq \seq{\zero}{k} \union \{\suc{k}\}$.
+ \begin{subproof}
+ Omitted.
+ \end{subproof}
+ We show that $\seq{\zero}{k} \union \{\suc{k}\} \subseteq \seq{\zero}{n}$.
+ \begin{subproof}
+ Omitted.
+ \end{subproof}
+ %$\seq{\zero}{k} \subseteq \seq{\zero}{n}$.
+ \end{subproof}
+ We have $\{n\} \notin n$.
+ We have $n \notmeets \{n\}$.
+ Let $X = \suc{n}$.
+ Let $Y = \seq{\zero}{n}$.
+ Define $F : X \to Y$ such that $F(x) =$
+ \begin{cases}
+ &f(x) &\text{if} x \in n\\
+ &\suc{k} &\text{if} x \in \{n\}
+ \end{cases}
+
+ \end{byCase}
+
%Assume $n$ is a natural number.
%We show that $\seq{\zero}{\zero}$ has cardinality $1$.
%\begin{subproof}
% It suffices to show that $1 = \seq{\zero}{\zero}$.
% Follows by set extensionality.
%\end{subproof}
+ %It suffices to show that if $n \neq \zero$ then $\seq{\zero}{n}$ has cardinality $\suc{n}$.
+ %We show that for all $m \in \naturals$ such that $m \neq \zero$ we have $\seq{\zero}{m}$ has cardinality $\suc{m}$.
+ %\begin{subproof}
+ % Fix $m \in \naturals$.
+ % Take $k$ such that $k \in \naturals$ and $\suc{k} = m$.
+ % Then $k \in m$.
+ %\end{subproof}
+
+
%For all $n \in \naturals$ we have either $n = \zero$ or there exist $m \in \naturals$ such that $n = \suc{m}$.
%For all $n \in \naturals$ we have either $n = \zero$ or $\zero \in n$.
%We show that if $\seq{\zero}{n}$ has cardinality $\suc{n}$ then $\seq{\zero}{\suc{n}}$ has cardinality $\suc{\suc{n}}$.
@@ -120,6 +168,10 @@
%\end{subproof}
\end{proof}
+%\begin{proposition}\label{seq_zero_to_n_isomorph_to_suc_n}
+% For all $n \in \naturals$ we have $\seq{\zero}{n}$ has cardinality $\suc{n}$.
+%\end{proposition}
+%
\begin{proposition}\label{existence_normal_ordered_urysohn}
Let $X$ be a urysohn space.
Suppose $U$ is a urysohnchain of $X$.