summaryrefslogtreecommitdiff
path: root/library/topology/urysohn2.tex
diff options
context:
space:
mode:
Diffstat (limited to 'library/topology/urysohn2.tex')
-rw-r--r--library/topology/urysohn2.tex157
1 files changed, 132 insertions, 25 deletions
diff --git a/library/topology/urysohn2.tex b/library/topology/urysohn2.tex
index 71de210..e963951 100644
--- a/library/topology/urysohn2.tex
+++ b/library/topology/urysohn2.tex
@@ -15,23 +15,35 @@
\section{Urysohns Lemma}
+\begin{definition}\label{minimum}
+ $\min{X} = \{x \in X \mid \forall y \in X. x \leq y \}$.
+\end{definition}
+
+
+\begin{definition}\label{maximum}
+ $\max{X} = \{x \in X \mid \forall y \in X. x \geq y \}$.
+\end{definition}
+
+
+\begin{definition}\label{intervalclosed}
+ $\intervalclosed{a}{b} = \{x \in \reals \mid a \leq x \leq b\}$.
+\end{definition}
+
+
+\begin{definition}\label{intervalopen}
+ $\intervalopen{a}{b} = \{ x \in \reals \mid a < x < b\}$.
+\end{definition}
+
\begin{definition}\label{one_to_n_set}
$\seq{m}{n} = \{x \in \naturals \mid m \leq x \leq n\}$.
\end{definition}
-\begin{struct}\label{sequence}
- A sequence $X$ is a onesorted structure equipped with
- \begin{enumerate}
- \item $\index$
- \item $\indexset$
- \end{enumerate}
- such that
- \begin{enumerate}
- \item\label{indexset_is_subset_naturals} $\indexset[X] \subseteq \naturals$.
- \item\label{index_is_bijection} $\index[X]$ is a bijection from $\indexset[X]$ to $\carrier[X]$.
- \end{enumerate}
-\end{struct}
+
+\begin{definition}\label{sequence}
+ $X$ is a sequence iff $X$ is a function and $\dom{f} \subseteq \naturals$.
+\end{definition}
+
\begin{abbreviation}\label{urysohnspace}
$X$ is a urysohn space iff
@@ -42,10 +54,66 @@
\end{abbreviation}
-\begin{definition}\label{intervalclosed}
- $\intervalclosed{a}{b} = \{x \in \reals \mid a \leq x \leq b\}$.
+\begin{abbreviation}\label{at}
+ $\at{f}{n} = f(n)$.
+\end{abbreviation}
+
+
+\begin{definition}\label{chain_of_subsets}
+ $X$ is a chain of subsets in $Y$ iff $X$ is a sequence and for all $n \in \dom{X}$ we have $\at{X}{n} \subseteq \carrier[Y]$.
+\end{definition}
+
+
+\begin{definition}\label{urysohnchain}%<-- zulässig
+ $X$ is a urysohnchain of $Y$ iff $X$ is a chain of subsets in $Y$ and for all $n,m \in \dom{X}$ such that $n < m$ we have $\closure{\at{X}{n}}{Y} \subseteq \interior{\at{X}{m}}{Y}$.
+\end{definition}
+
+
+\begin{definition}\label{finer} %<-- verfeinerung
+ $X$ is finer then $Y$ in $U$ iff for all $n \in \dom{X}$ we have $\at{X}{n} \in \ran{Y}$ and for all $m \in \dom{X}$ such that $n < m$ we have there exist $k \in \dom{Y}$ such that $ \closure{\at{X}{n}}{U} \subseteq \interior{\at{Y}{k}}{U} \subseteq \closure{\at{Y}{k}}{U} \subseteq \interior{\at{X}{m}}{U}$.
+\end{definition}
+
+
+\begin{definition}\label{sequence_of_reals}
+ $X$ is a sequence of reals iff $\ran{X} \subseteq \reals$.
+\end{definition}
+
+
+\begin{axiom}\label{abs_behavior1}
+ If $x \geq \zero$ then $\abs{x} = x$.
+\end{axiom}
+
+\begin{axiom}\label{abs_behavior2}
+ If $x < \zero$ then $\abs{x} = \neg{x}$.
+\end{axiom}
+
+\begin{definition}\label{realsminus}
+ $\realsminus = \{r \in \reals \mid r < \zero\}$.
\end{definition}
+\begin{definition}\label{realsplus}
+ $\realsplus = \reals \setminus \realsminus$.
+\end{definition}
+
+\begin{definition}\label{epsilon_ball}
+ $\epsBall{x}{\epsilon} = \intervalopen{x-\epsilon}{x+\epsilon}$.
+\end{definition}
+
+\begin{definition}\label{pointwise_convergence}
+ $X$ converge to $x$ iff for all $\epsilon \in \realsplus$ there exist $N \in \dom{X}$ such that for all $n \in \dom{X}$ such that $n > N$ we have $\at{X}{n} \in \epsBall{x}{\epsilon}$.
+\end{definition}
+
+
+
+
+
+
+
+
+
+
+
+
\begin{theorem}\label{urysohnsetinbeetween}
Let $X$ be a urysohn space.
Suppose $A,B \in \closeds{X}$.
@@ -55,7 +123,6 @@
\end{theorem}
-
\begin{theorem}\label{urysohn}
Let $X$ be a urysohn space.
Suppose $A,B \in \closeds{X}$.
@@ -76,8 +143,8 @@
Define $F : \eta \to \reals$ such that $F(x) =$
\begin{cases}
& \zero &\text{if} x \in A\\
- & \rfrac{1}{1+1} &\text{if} x \in (\carrier[X] \setminus (A \union B))\\
- & 1 &\text{if} x \in B
+ & \rfrac{1}{1+1} &\text{if} x \in (\carrier[X] \setminus (A \union B))\\
+ & 1 &\text{if} x \in B
\end{cases}
%Define $f : \naturals \to \pow{P}$ such that $f(x)=$
@@ -87,19 +154,59 @@
% & G & \text{if} x \in (\naturals \setminus \{1, \zero\}) \land G = \{g \in \pow{P} \mid g \in f(n-1) \lor (g \notin f(n-1) \land g \in P) \}
%\end{cases}
- Let $D = \{d \mid d \in \rationals \mid \zero \leq d \leq 1\}$.
- Take $R$ such that for all $q \in D$ we have for all $S \in P$ we have $q \mathrel{R} S$ iff
- $q = \zero \land S = A$ or $q = 1 \land S = H$ or
- for all $q_1, q_2, S_1, S_2$
- such that $q_1 \leq q \leq q_2$ and $q_1 \mathrel{R} S_1$ and $q_2 \mathrel{R} S_2$
- we have $\closure{S_1}{X} \subseteq \interior{S}{X} \subseteq \closure{S}{X} \subseteq \interior{S_2}{X}$
- and $q \mathrel{R} S$.
+ %Let $D = \{d \mid d \in \rationals \mid \zero \leq d \leq 1\}$.
+ %Take $R$ such that for all $q \in D$ we have for all $S \in P$ we have $q \mathrel{R} S$ iff
+ % $q = \zero \land S = A$ or $q = 1 \land S = H$ or
+ % for all $q_1, q_2, S_1, S_2$
+ % such that $q_1 \leq q \leq q_2$ and $q_1 \mathrel{R} S_1$ and $q_2 \mathrel{R} S_2$
+ % we have $\closure{S_1}{X} \subseteq \interior{S}{X} \subseteq \closure{S}{X} \subseteq \interior{S_2}{X}$
+ % and $q \mathrel{R} S$.
- Trivial.
+ %Let $J = \{(n,f) \mid n denots the cardinality of a urysohn chain on which f is a staircase function\}$.
+%
+ %Let $N = \naturals$.
+ %Define $j : N \to \funs{\carrier[X]}{\eals}$ such that $j(n) =$
+ %\begin{cases}
+ % & f &\text{if} n \in N \land \exist w \in J. J=(n,f)
+ %\end{cases}
+
+
+
+
+
+
+
+
+
\end{proof}
\begin{theorem}\label{safe}
Contradiction.
\end{theorem}
+
+
+
+
+%
+%Ideen:
+%Eine folge ist ein Funktion mit domain \subseteq Natürlichenzahlen. als predicat
+%
+%zulässig und verfeinerung von ketten als predicat definieren.
+%
+%limits und punkt konvergenz als prädikat.
+%
+%
+%Vor dem Beweis vor dem eigentlichen Beweis.
+%die abgeleiteten Funktionen
+%
+%\derivedstiarcasefunction on A
+%
+%abbreviation: \at{f}{n} = f_{n}
+%
+%
+%TODO:
+%Reals ist ein topologischer Raum
+%
+