summaryrefslogtreecommitdiff
path: root/library/topology/urysohn2.tex
diff options
context:
space:
mode:
Diffstat (limited to 'library/topology/urysohn2.tex')
-rw-r--r--library/topology/urysohn2.tex56
1 files changed, 56 insertions, 0 deletions
diff --git a/library/topology/urysohn2.tex b/library/topology/urysohn2.tex
new file mode 100644
index 0000000..8e5261e
--- /dev/null
+++ b/library/topology/urysohn2.tex
@@ -0,0 +1,56 @@
+\import{topology/topological-space.tex}
+\import{topology/separation.tex}
+\import{topology/continuous.tex}
+\import{topology/basis.tex}
+\import{numbers.tex}
+\import{function.tex}
+\import{set.tex}
+\import{cardinal.tex}
+\import{relation.tex}
+\import{relation/uniqueness.tex}
+\import{set/cons.tex}
+\import{set/powerset.tex}
+\import{set/fixpoint.tex}
+\import{set/product.tex}
+
+\section{Urysohns Lemma}
+
+
+
+\begin{abbreviation}\label{urysohnspace}
+ $X$ is a urysohn space iff
+ $X$ is a topological space and
+ for all $A,B \in \closeds{X}$ such that $A \inter B = \emptyset$
+ we have there exist $A',B' \in \opens[X]$
+ such that $A \subseteq A'$ and $B \subseteq B'$ and $A' \inter B' = \emptyset$.
+\end{abbreviation}
+
+
+\begin{definition}\label{intervalclosed}
+ $\intervalclosed{a}{b} = \{x \in \reals \mid a \leq x \leq b\}$.
+\end{definition}
+
+
+
+
+\begin{theorem}\label{urysohn}
+ Let $X$ be a urysohn space.
+ Suppose $A,B \in \closeds{X}$.
+ Suppose $A \inter B$ is empty.
+ Suppose $\carrier[X]$ is inhabited.
+ There exist $f$ such that $f \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}}$
+ and $f(A) = \zero$ and $f(B)= 1$ and $f$ is continuous.
+\end{theorem}
+\begin{proof}
+
+
+
+
+
+ Contradiction.
+
+\end{proof}
+
+\begin{theorem}\label{safe}
+ Contradiction.
+\end{theorem}