summaryrefslogtreecommitdiff
path: root/library/topology/urysohn2.tex
diff options
context:
space:
mode:
Diffstat (limited to 'library/topology/urysohn2.tex')
-rw-r--r--library/topology/urysohn2.tex18
1 files changed, 14 insertions, 4 deletions
diff --git a/library/topology/urysohn2.tex b/library/topology/urysohn2.tex
index 08841da..a1a3ba0 100644
--- a/library/topology/urysohn2.tex
+++ b/library/topology/urysohn2.tex
@@ -15,7 +15,7 @@
\import{topology/real-topological-space.tex}
\import{set/equinumerosity.tex}
-\section{Urysohns Lemma}
+\section{Urysohns Lemma}\label{form_sec_urysohn}
@@ -891,15 +891,25 @@
\begin{byCase}
\caseOf{$x \in (\carrier[X] \setminus \closure{\at{U'}{\max{\dom{U'}}}}{X})$.}
Therefore $x \notin \closure{\at{U'}{\max{\dom{U'}}}}{X}$.
- Therefore $x \notin \closure{\at{U'}{\min{\dom{U'}}}}{X}$.
+ We show that $x \notin \closure{\at{U'}{\min{\dom{U'}}}}{X}$.
+ \begin{subproof}
+ Omitted.
+ \end{subproof}
Therefore $x \notin (\closure{\at{U'}{\max{\dom{U'}}}}{X}\setminus \closure{\at{U'}{\min{\dom{U'}}}}{X})$.
- Then $g(x) = 1$ .
+ We show that $g(x) = 1$.
+ \begin{subproof}
+ Omitted.
+ \end{subproof}
\caseOf{$x \in \closure{\at{U'}{\max{\dom{U'}}}}{X}$.}
\begin{byCase}
\caseOf{$x \in \closure{\at{U'}{\min{\dom{U'}}}}{X}$.}
- $g(x) = \zero$.
+ We show that $g(x) = \zero$.
+ \begin{subproof}
+ Omitted.
+ \end{subproof}
\caseOf{$x \in (\closure{\at{U'}{\max{\dom{U'}}}}{X}\setminus \closure{\at{U'}{\min{\dom{U'}}}}{X})$.}
Then $g(x)$ is the staircase step value at $x$ of $U'$ in $X$.
+ Omitted.
\end{byCase}
\end{byCase}