summaryrefslogtreecommitdiff
path: root/library/topology
diff options
context:
space:
mode:
Diffstat (limited to 'library/topology')
-rw-r--r--library/topology/basis.tex13
1 files changed, 7 insertions, 6 deletions
diff --git a/library/topology/basis.tex b/library/topology/basis.tex
index f0f77e4..cc9d7e5 100644
--- a/library/topology/basis.tex
+++ b/library/topology/basis.tex
@@ -101,6 +101,8 @@
$B$ covers $X$ by \cref{topological_prebasis_iff_covering_family,topological_basis}.
$\unions{B} \in \genOpens{B}{X}$.
$X \subseteq \unions{B}$.
+ For all $x\in X$ there exists $V\in B$ such that $x\in V\subseteq X$.
+ Follows by \cref{powerset_top,genopens}.
\end{proof}
\begin{lemma}\label{inters_in_genopens}
@@ -112,17 +114,16 @@
We have $(A \inter C) \in \pow{X}$ by \cref{genopens,inter_powerset}.
-
- Show for all $x\in (A\inter C)$ there exists $W \in B$
- such that $x\in W$ and $W \subseteq (A\inter C)$.
+ Show for all $x\in A\inter C$ there exists $W \in B$
+ such that $x\in W$ and $W \subseteq A\inter C$.
\begin{subproof}
- Fix $x \in (A\inter C)$.
+ Fix $x \in A\inter C$.
Then $x\in A,C$.
There exists $V' \in B$ such that $x \in V' \subseteq A$ by \cref{genopens}.
There exists $V'' \in B$ such that $x \in V''\subseteq C$ by \cref{genopens}.
- There exists $W \in B$ such that $x \in W$ and $W \subseteq V'$ and $W \subseteq V''$ by \cref{topological_basis}.
+ There exists $W \in B$ such that $x \in W \subseteq V', V''$ by \cref{topological_basis}.
- Show $W \subseteq (A\inter C)$.
+ Show $W \subseteq A\inter C$.
\begin{subproof}
For all $y \in W$ we have $y \in V'$ and $y \in V''$.
\end{subproof}