summaryrefslogtreecommitdiff
path: root/library/topology
diff options
context:
space:
mode:
Diffstat (limited to 'library/topology')
-rw-r--r--library/topology/urysohn.tex82
1 files changed, 42 insertions, 40 deletions
diff --git a/library/topology/urysohn.tex b/library/topology/urysohn.tex
index d8b1e14..414043f 100644
--- a/library/topology/urysohn.tex
+++ b/library/topology/urysohn.tex
@@ -526,6 +526,11 @@ The first tept will be a formalisation of chain constructions.
Omitted.
\end{subproof}
+ We show that for all $n \in \naturals$ for all $x \in \carrier[X]$ we have $\apply{\gamma(n)}{x} \in \intervalclosed{\zero}{1}$.
+ \begin{subproof}
+ Omitted.
+ \end{subproof}
+
We show that there exist $g$ such that
@@ -535,18 +540,7 @@ The first tept will be a formalisation of chain constructions.
there exist $N \in \naturals$ such that
for all $N' \in \naturals$ such that $N' > N$ we have
$\abs{\apply{\gamma(n)}{x} - k} < \epsilon$ and $g(x)= k$.
- \begin{subproof}
-
- %Let $G(x) = \{k \in \carrier[X] \mid \forall \epsilon \in \realsplus. \exists N \in \naturals. \forall N' \in \naturals. (N' > N) \land (\abs{\apply{\gamma(n)}{x} - k} < \epsilon)\}$ for $x \in \carrier[X]$.
-%
- %We show that for all $x \in \carrier[X]$ we have $G(x)$ has cardinality $1$.
- %\begin{subproof}
- % Omitted.
- %\end{subproof}
-%
- %Let $H(x) = \unions{G(x)}$ for $x \in \carrier[X]$.
- %For all $x \in \carrier[X]$ we have $\{H(x)\} = G(x)$.
-
+ \begin{subproof}
We show that for all $x \in \carrier[X]$ we have
there exist $k \in \reals$ such that
for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have
@@ -554,10 +548,9 @@ The first tept will be a formalisation of chain constructions.
for all $N' \in \naturals$ such that $N' > N$ we have
$\abs{\apply{\gamma(n)}{x} - k} < \epsilon$.
\begin{subproof}
- Omitted.
+ Fix $x \in \carrier[X]$.
+ Follows by \cref{two_in_naturals,function_apply_default,reals_axiom_zero_in_reals,dom_emptyset,notin_emptyset,funs_type_apply,neg,minus,abs_behavior1}.
\end{subproof}
-
-
\end{subproof}
@@ -581,44 +574,53 @@ The first tept will be a formalisation of chain constructions.
%\begin{subproof}
% Omitted.
%\end{subproof}
+
+ Let $G(x) = g(x)$ for $x \in \carrier[X]$.
+ We have $\dom{G} = \carrier[X]$.
-
- We show that $F \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}}$.
- \begin{subproof}
+ %For all $x \in \carrier[X]$ for all $n \in \naturals$ we have $g(x) \leq \apply{\gamma(n)}{x}$.
+
+ We show that for all $x \in \dom{G}$ we have $G(x) \in \reals$.
+ \begin{subproof}
+ Fix $x \in \dom{G}$.
+ It suffices to show that $g(x) \in \reals$.
+
+ %There exist $k \in \reals$ such that for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have there exist $N \in \naturals$ such that for all $N' \in \naturals$ such that $N' > N$ we have $\abs{\apply{\gamma(n)}{x} - k} < \epsilon$ and $g(x)= k$.
+
+
+
+ \end{subproof}
+
+ We show that for all $x \in \dom{G}$ we have $\zero \leq G(x) \leq 1$.
+ \begin{subproof}
Omitted.
-
- %It suffices to show that $\dom{F} = \carrier[X]$ and
- %$F \in \rels{\carrier[X]}{\intervalclosed{\zero}{1}}$ and $F$ is right-unique.
- %
- %We show that $F \in \rels{\carrier[X]}{\intervalclosed{\zero}{1}}$.
- %\begin{subproof}
- % It suffices to show that $F \in \pow{\carrier[X] \times \intervalclosed{\zero}{1}}$.
- % It suffices to show that for all $w \in F$ we have $w \in (\carrier[X] \times \intervalclosed{\zero}{1})$.
-%
- % Fix $w \in F$.
-%
- % %Take $x$ such that there exist $k \in \intervalclosed{\zero}{1}$ such that $w = (x,k)$.
-%
-%
- %\end{subproof}
- %
-%
-%
- %Trivial.
\end{subproof}
- We show that $F(A) = \zero$.
+
+ We show that $G \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}}$.
+ \begin{subproof}
+ It suffices to show that $\ran{G} \subseteq \intervalclosed{\zero}{1}$ by \cref{fun_ran_iff,funs_intro,funs_weaken_codom}.
+ It suffices to show that for all $x \in \dom{G}$ we have $G(x) \in \intervalclosed{\zero}{1}$.
+ Fix $x \in \dom{G}$.
+ Then $x \in \carrier[X]$.
+ $g(x) = G(x)$.
+ We have $G(x) \in \reals$.
+ $\zero \leq G(x) \leq 1$.
+ We have $G(x) \in \intervalclosed{\zero}{1}$ .
+ \end{subproof}
+
+ We show that $G(A) = \zero$.
\begin{subproof}
Omitted.
\end{subproof}
- We show that $F(B) = 1$.
+ We show that $G(B) = 1$.
\begin{subproof}
Omitted.
\end{subproof}
- We show that $F$ is continuous.
+ We show that $G$ is continuous.
\begin{subproof}
Omitted.
\end{subproof}