summaryrefslogtreecommitdiff
path: root/library/topology
diff options
context:
space:
mode:
Diffstat (limited to 'library/topology')
-rw-r--r--library/topology/separation.tex10
-rw-r--r--library/topology/topological-space.tex136
2 files changed, 135 insertions, 11 deletions
diff --git a/library/topology/separation.tex b/library/topology/separation.tex
index 530a51f..535a51f 100644
--- a/library/topology/separation.tex
+++ b/library/topology/separation.tex
@@ -75,11 +75,8 @@
Let $X$ be a \teeone-space.
Assume $x \in \carrier[X]$.
Then $\{x\}$ is closed in $X$.
- %Then for all $x\in\carrier[X]$ we have $\{x\}$ is closed in $X$. Ambigus Phrase. if Omitted is ereased.
\end{proposition}
\begin{proof}
- %Omitted.
- %Fix $x \in X$.
Let $V = \{ U \in \opens[X] \mid x \notin U\}$.
For all $y \in \carrier[X]$ such that $x \neq y$ there exist $U \in \opens[X]$ such that $x \notin U \ni y$.
For all $y \in \carrier[X]$ such that $y \neq x$ there exists $U \in V$ such that $y \in U$.
@@ -99,13 +96,6 @@
For all $y \in \unions{V}$ we have $y \in \carrier[X] \setminus \{x\}$.
Follows by set extensionality.
\end{subproof}
- % Let $U_{y} \in \opens[X]$ such that $x \neq y \in X$. Error: unexpected '{' expecting digit
- %For all $y$ there exists $U$ such that $x \neq y$ and $y \in U$ and $U \in \opens[X]$.
-
- % TODO
- % Choose for every y distinct from x and open subset U_y containing y but not x.
- % The union U of all the U_y is open.
- % {x} is the complement of U in \carrier[X].
\end{proof}
%
% Conversely, if \{x\} is open, then for any y distinct from x we can use
diff --git a/library/topology/topological-space.tex b/library/topology/topological-space.tex
index 2bbdf09..2590287 100644
--- a/library/topology/topological-space.tex
+++ b/library/topology/topological-space.tex
@@ -217,12 +217,146 @@
\end{proof}
+%Def: $\inters{A} = \{ x\in\unions{A}\mid \text{for all $a\in A$ we have $x\in a$} \}$.
+
+\begin{proposition}\label{subseteq_inters_iff_to_right}
+ Let $A,F$ be sets.
+ Suppose $A \subseteq \inters{F}$.
+ Then for all $X \in F$ we have $A \subseteq X$.
+\end{proposition}
+
+
+\begin{proposition}\label{subseteq_of_all_then_subset_of_union}
+ Let $A,F$ be sets.
+ Suppose for all $X \in F$ we have $A \subseteq X$.
+ Then $A \subseteq \unions{F}$.
+\end{proposition}
+\begin{proof}
+ \begin{byCase}
+ \caseOf{$F$ is empty.} Trivial.
+ \caseOf{$F$ is inhabited.}
+ There exist $X \in F$ such that $X \subseteq \unions{F}$.
+ $A \subseteq X \subseteq \unions{F}$.
+ \end{byCase}
+\end{proof}
+
+\begin{proposition}\label{subseteq_inters_iff_to_left}
+ Let $A,F$ be sets.
+ Suppose for all $X \in F$ we have $A \subseteq X$.
+ Then $A \subseteq \inters{F}$.
+\end{proposition}
+\begin{proof}
+ \begin{byCase}
+ \caseOf{$A = \emptyset$.}Trivial.
+ \caseOf{$A \neq \emptyset$.}
+ It suffices to show that for all $a \in A$ we have $a \in \inters{F}$.
+ Fix $a \in A$.
+ For all $X \in F$ we have $a \in X$.
+ $A \subseteq \unions{F}$.
+ $a \in \unions{F}$.
+ \end{byCase}
+
+ %It suffices to show that for all $a \in A$ we have $x \in \inters{F}$. % This have been proven!!! But it shouldn't.
+
+% we show that there exist $Y \in F$ such that $a \in Y$.
+% \begin{subproof}
+
+% \begin{byCase}
+% \caseOf{$a = \emptyset$.}
+% $\emptyset \subseteq \inters{F}$.
+% $\emptyset \in \emptyset$.
+% \caseOf{$a \neq \emptyset$.} Omitted.
+% \end{byCase}
+
+ %cases by a = \emptyset
+ %case a \neq \emptyset
+% \end{subproof}
+\end{proof}
+
+%------------------------ Only example -------------------------------------
+\begin{proposition}\label{subseteq_inters_iff_new}
+ $A \subseteq \inters{F}$ iff for all $X \in F$ we have $A \subseteq X$.
+\end{proposition}
+%\begin{proof}
+% We show that if $A \subseteq \inters{F}$ then for all $X \in F$ we have $A \subseteq X$.
+% \begin{subproof}
+ %It suffices to show that for all $a,X$ such that $a \in A$ and $X \in F$ we have $a \in X$.
+ %Fix $a \in A$.
+ %Fix $X \in F$. %TODO: Missmatched Assume!
+
+% It suffices to show that for all $a,X$ such that $a \in A$ and $X \in F$ we have $a \in X$.
+% Follows by \cref{inters}.
+% \end{subproof}
+% We show that for all $X \in F$ such that $A \subseteq X$ we have $A \subseteq \inters{F}$.
+% \begin{subproof}
+% Omitted.
+% \end{subproof}
+%\end{proof}
+
+\begin{proposition}\label{set_is_subseteq_to_closure_of_the_set}
+ $A \subseteq \closure{A}{X}$.
+\end{proposition}
+\begin{proof}
+ %$\closures{A}{X}$ is inhabited. %TODO: Inhabited why does "subseteq_inters_iff" has inhabited as assumtion??
+ For all $A' \in \closures{A}{X}$ we have $A \subseteq A'$.
+ Therefore $A \subseteq \inters{\closures{A}{X}}$.
+\end{proof}
+
+\begin{proposition}\label{complement_of_closure_of_complement_of_x_subseteq_x}
+ $(\carrier[X] \setminus \closure{(\carrier[X]\setminus A)}{X}) \subseteq A$.
+\end{proposition}
+\begin{proof}
+ It suffices to show that for all $x \in (\carrier[X] \setminus \closure{(\carrier[X]\setminus A)}{X})$ we have $x \in A$.
+ If $x \in \carrier[X]\setminus A$ then $x \in \closure{(\carrier[X]\setminus A)}{X}$.
+
+\end{proof}
+
\begin{proposition}%[Complement of interior equals closure of complement]
\label{complement_interior_eq_closure_complement}
+ Let $X$ be a topological space.
$\carrier[X]\setminus\interior{A}{X} = \closure{(\carrier[X]\setminus A)}{X}$.
\end{proposition}
\begin{proof}
- Omitted. % Use general De Morgan's Law in Pow|X|
+ We show that for all $x \in \carrier[X]\setminus\interior{A}{X}$ we have $x \in \closure{(\carrier[X]\setminus A)}{X}$.
+ \begin{subproof}
+ Fix $x \in \carrier[X]\setminus\interior{A}{X}$.
+ Suppose not.
+ $x \notin \closure{(\carrier[X]\setminus A)}{X}$.
+ $x \in \carrier[X]$.
+ For all $x \in X$ such that $A \union B = X$ and $A \inter B = \emptyset$ we have $x \in A \implies x \notin B$.
+ For all $x \in X$ such that $A \union B = X$ and $A \inter B = \emptyset$ we have $x \notin A \implies x \in B$.
+ $(\carrier[X] \setminus \closure{(\carrier[X]\setminus A)}{X}) \inter \closure{(\carrier[X]\setminus A)}{X} = \emptyset$.
+ %$(\carrier[X] \setminus \closure{(\carrier[X]\setminus A)}{X}) \subseteq A$. %TODO:
+ $x \in A$.
+ $x \in A \inter (\carrier[X] \setminus \closure{(\carrier[X]\setminus A)}{X})$.
+ $\carrier[X] \setminus \closure{(\carrier[X]\setminus A)}{X} \in \opens[X]$. %TODO:
+ Contradiction.
+ \end{subproof}
+
+ $\carrier[X]\setminus\interior{A}{X} \subseteq \closure{(\carrier[X]\setminus A)}{X}$.
+
+ $\closure{(\carrier[X]\setminus A)}{X} \subseteq \carrier[X]\setminus\interior{A}{X}$. %TODO:
+
+ %We show that for all $x \in \carrier[X]\setminus\interior{A}{X}$ we have $x \in \closure{(\carrier[X]\setminus A)}{X}$.
+ %\begin{subproof}
+ % Fix $x \in \carrier[X]\setminus\interior{A}{X}$.
+ % \begin{byCase}
+ % \caseOf{$x \in \carrier[X] \setminus A$.}
+ % Trivial.
+ % \caseOf{$x \in \carrier[X] \setminus A \inter \interior{A}{X}$.}
+ % $\carrier[X] \setminus \closure{A}{X} \in \opens[X]$.
+ % $\interior{A}{X} \in \opens[X]$.
+ % Therefore $\carrier[X] \setminus \closure{A}{X} \inter \interior{A}{X} \in \opens[X]$.
+ % %$\carrier[X] \setminus \closure{A}{X}$ is open. TODO: is open throws an error!
+ % %$\interior{A}{X}$ is open.
+ % %Therefore $\carrier[X] \setminus \closure{A}{X} \inter \interior{A}{X}$ is open.
+ %
+ % \end{byCase}
+ %\end{subproof}
+ %Suffices reduction by \cref ::::: reduction => goal.
+
+
+ %Omitted. % Use general De Morgan's Law in Pow|X|
\end{proof}
\begin{definition}[Frontier]\label{frontier}