summaryrefslogtreecommitdiff
path: root/library/topology
diff options
context:
space:
mode:
Diffstat (limited to 'library/topology')
-rw-r--r--library/topology/urysohn.tex248
1 files changed, 124 insertions, 124 deletions
diff --git a/library/topology/urysohn.tex b/library/topology/urysohn.tex
index cd85fbc..bfbf54d 100644
--- a/library/topology/urysohn.tex
+++ b/library/topology/urysohn.tex
@@ -13,8 +13,8 @@
\import{set/fixpoint.tex}
\import{set/product.tex}
-\section{Urysohns Lemma Part 1 with struct}\label{form_sec_urysohn1}
-% In this section we want to proof Urysohns lemma.
+\section{Urysohns Lemma Part One with struct}\label{form_sec_urysohn1}
+% In this section we want to proof Urysohns lemma.
% We try to follow the proof of Klaus Jänich in his book. TODO: Book reference
% The Idea is to construct staircase functions as a chain.
% The limit of our chain turns out to be our desired continuous function from a topological space $X$ to $[0,1]$.
@@ -22,29 +22,29 @@
%Chains of sets.
-This is the first attempt to prove Urysohns Lemma with the usage of struct.
+This is the first attempt to prove Urysohns Lemma with the usage of struct.
\subsection{Chains of sets}
% Assume $A,B$ are subsets of a topological space $X$.
% As Jänich propose we want a special property on chains of subsets.
-% We need a rising chain of subsets $\mathfrak{A} = (A_{0}, ... ,A_{r})$ of $A$, i.e.
+% We need a rising chain of subsets $\mathfrak{A} = (A_{0}, ... ,A_{r})$ of $A$, i.e.
% \begin{align}
-% A = A_{0} \subset A_{1} \subset ... \subset A_{r} \subset X\setminus B
-% \end{align}
-% such that for all elements in this chain following holds,
-% $\overline{A_{i-1}} \subset \interior{A_{i}}$.
+% A = A_{0} \subset A_{1} \subset ... \subset A_{r} \subset X\setminus B
+% \end{align}
+% such that for all elements in this chain following holds,
+% $\overline{A_{i-1}} \subset \interior{A_{i}}$.
% In this case we call the chain legal.
\begin{definition}\label{urysohnone_one_to_n_set}
- $\seq{m}{n} = \{x \in \naturals \mid m \leq x \leq n\}$.
+ $\seq{m}{n} = \{x \in \naturals \mid m \leq x \leq n\}$.
\end{definition}
%%-----------------------
% Idea:
-% A sequence could be define as a family of sets,
+% A sequence could be define as a family of sets,
% together with the existence of an indexing function.
%
%%-----------------------
@@ -53,7 +53,7 @@ This is the first attempt to prove Urysohns Lemma with the usage of struct.
\begin{enumerate}
\item $\indexx$
\item $\indexxset$
-
+
\end{enumerate}
such that
\begin{enumerate}
@@ -62,7 +62,7 @@ This is the first attempt to prove Urysohns Lemma with the usage of struct.
\end{enumerate}
\end{struct}
-% Eine folge ist ein Funktion mit domain \subseteq Ordinal zahlen
+% Eine folge ist ein Funktion mit domain \subseteq Ordinal zahlen
@@ -74,7 +74,7 @@ This is the first attempt to prove Urysohns Lemma with the usage of struct.
\begin{definition}\label{urysohnone_chain_of_n_subsets}
$C$ is a chain of $n$ subsets iff
- $C$ is a chain of subsets and $n \in \indexxset[C]$
+ $C$ is a chain of subsets and $n \in \indexxset[C]$
and for all $m \in \naturals$ such that $m \leq n$ we have $m \in \indexxset[C]$.
\end{definition}
@@ -85,19 +85,19 @@ This is the first attempt to prove Urysohns Lemma with the usage of struct.
% \begin{definition}\label{urysohnone_legal_chain}
-% $C$ is a legal chain of subsets of $X$ iff
-% $C \subseteq \pow{X}$. %and
+% $C$ is a legal chain of subsets of $X$ iff
+% $C \subseteq \pow{X}$. %and
% %there exist $f \in \funs{C}{\naturals}$ such that
% %for all $x,y \in C$ we have if $f(x) < f(y)$ then $x \subset y \land \closure{x} \subset \interior{y}$.
% \end{definition}
-% TODO: We need a notion for declarinf new properties to existing thing.
+% TODO: We need a notion for declarinf new properties to existing thing.
%
% The following gives a example and a wish want would be nice to have:
% "A (structure) is called (adjectiv of property), if"
%
% This should then be use als follows:
-% Let $X$ be a (adjectiv_1) ... (adjectiv_n) (structure_word).
+% Let $X$ be a (adjectiv_1) ... (adjectiv_n) (structure_word).
% Which should be translated to fol like this:
% ?[X]: is_structure(X) & is_adjectiv_1(X) & ... & is_adjectiv_n(X)
% ---------------------------------------------------------------
@@ -134,17 +134,17 @@ This is the first attempt to prove Urysohns Lemma with the usage of struct.
\item \label{urysohnone_staircase_domain} $\dom{f}$ is a topological space.
\item \label{urysohnone_staricase_def_chain} $C$ is a chain of subsets.
\item \label{urysohnone_staircase_chain_is_in_domain} for all $x \in C$ we have $x \subseteq \dom{f}$.
- \item \label{urysohnone_staircase_behavoir_index_zero} $f(\indexx[C](1))= 1$.
+ \item \label{urysohnone_staircase_behavoir_index_zero} $f(\indexx[C](1))= 1$.
\item \label{urysohnone_staircase_behavoir_index_n} $f(\dom{f}\setminus \unions{C}) = \zero$.
\item \label{urysohnone_staircase_chain_indeset} There exist $n$ such that $\indexxset[C] = \seq{\zero}{n}$.
- \item \label{urysohnone_staircase_behavoir_index_arbetrray} for all $n \in \indexxset[C]$
- such that $n \neq \zero$ we have $f(\indexx[C](n) \setminus \indexx[C](n-1)) = \rfrac{n}{ \max{\indexxset[C]} }$.
+ \item \label{urysohnone_staircase_behavoir_index_arbetrray} for all $n \in \indexxset[C]$
+ such that $n \neq \zero$ we have $f(\indexx[C](n) \setminus \indexx[C](n-1)) = \rfrac{n}{ \max{\indexxset[C]} }$.
\end{enumerate}
\end{struct}
\begin{definition}\label{urysohnone_legal_staircase}
$f$ is a legal staircase function iff
- $f$ is a staircase function and
+ $f$ is a staircase function and
for all $n,m \in \indexxset[\chain[f]]$ such that $n \leq m$ we have $f(\indexx[\chain[f]](n)) \leq f(\indexx[\chain[f]](m))$.
\end{definition}
@@ -153,7 +153,7 @@ This is the first attempt to prove Urysohns Lemma with the usage of struct.
$X$ is a topological space and
for all $A,B \in \closeds{X}$ such that $A \inter B = \emptyset$
we have there exist $A',B' \in \opens[X]$
- such that $A \subseteq A'$ and $B \subseteq B'$ and $A' \inter B' = \emptyset$.
+ such that $A \subseteq A'$ and $B \subseteq B'$ and $A' \inter B' = \emptyset$.
\end{abbreviation}
\begin{definition}\label{urysohnone_urysohnchain}
@@ -181,7 +181,7 @@ This is the first attempt to prove Urysohns Lemma with the usage of struct.
\begin{definition}\label{urysohnone_refinmant}
$C'$ is a refinmant of $C$ iff $C'$ is a urysohnchain in $X$
- and for all $x \in C$ we have $x \in C'$
+ and for all $x \in C$ we have $x \in C'$
and for all $y \in C$ such that $y \subset x$ we have there exist $c \in C'$ such that $y \subset c \subset x$
and for all $g \in C'$ such that $g \neq c$ we have not $y \subset g \subset x$.
\end{definition}
@@ -226,7 +226,7 @@ This is the first attempt to prove Urysohns Lemma with the usage of struct.
$\pot \in \funs{\naturals}{\naturals}$.
\end{axiom}
-\begin{axiom}\label{urysohnone_pot2}
+\begin{axiom}\label{urysohnone_pot2}
For all $n \in \naturals$ we have there exist $k\in \naturals$ such that $(n, k) \in \powerOfTwoSet$ and $\apply{\pot}{n}=k$.
%$\pot(n) = k$ iff there exist $x \in \powerOfTwoSet$ such that $x = (n,k)$.
\end{axiom}
@@ -267,7 +267,7 @@ This is the first attempt to prove Urysohns Lemma with the usage of struct.
Therefore $C$ is closed in $X$ by \cref{closure_is_closed}.
\begin{byCase}
\caseOf{$C = B$.}
- %We have $\carrier[X] \setminus A$ is open in $X$.
+ %We have $\carrier[X] \setminus A$ is open in $X$.
%We have $\carrier[X] \setminus B$ is open in $X$.
%$\{x\}$ is closed in $X$.% by \cref{hausdorff_implies_singltons_closed}.
%$A \union \{x\} = C$.
@@ -303,37 +303,37 @@ This is the first attempt to prove Urysohns Lemma with the usage of struct.
% \begin{subproof}
% Omitted.
% \end{subproof}
-%
+%
% We show that $A \subseteq (\carrier[X] \setminus B)$.
% \begin{subproof}
% Omitted.
% \end{subproof}
-%
+%
% We show that $U$ is a chain of subsets.
% \begin{subproof}
% For all $n \in \indexxset[U]$ we have $n = \zero \lor n = 1$.
% It suffices to show that for all $n \in \indexxset[U]$ we have
- % for all $m \in \indexxset[U]$ such that
+ % for all $m \in \indexxset[U]$ such that
% $n < m$ we have $\indexx[U](n) \subseteq \indexx[U](m)$.
% Fix $n \in \indexxset[U]$.
% Fix $m \in \indexxset[U]$.
% \begin{byCase}
% \caseOf{$n = 1$.} Trivial.
- % \caseOf{$n = \zero$.}
+ % \caseOf{$n = \zero$.}
% \begin{byCase}
% \caseOf{$m = \zero$.} Trivial.
% \caseOf{$m = 1$.} Omitted.
% \end{byCase}
% \end{byCase}
% \end{subproof}
-%
+%
% $A \subseteq X$.
% $(X \setminus B) \subseteq X$.
% We show that for all $x \in U$ we have $x \subseteq X$.
% \begin{subproof}
% Omitted.
% \end{subproof}
-%
+%
% We show that $\closure{A}{X} \subseteq \interior{(X \setminus B)}{X}$.
% \begin{subproof}
% Omitted.
@@ -344,7 +344,7 @@ This is the first attempt to prove Urysohns Lemma with the usage of struct.
% Omitted.
% \end{subproof}
-
+
\end{proof}
\begin{proposition}\label{urysohnone_urysohnchain_induction_begin_step_two}
@@ -367,7 +367,7 @@ This is the first attempt to prove Urysohns Lemma with the usage of struct.
\begin{proposition}\label{urysohnone_t_four_propositon}
Let $X$ be a urysohn space.
Then for all $A,B \subseteq X$ such that $\closure{A}{X} \subseteq \interior{B}{X}$
- we have there exists $C \subseteq X$ such that
+ we have there exists $C \subseteq X$ such that
$\closure{A}{X} \subseteq \interior{C}{X} \subseteq \closure{C}{X} \subseteq \interior{B}{X}$.
\end{proposition}
\begin{proof}
@@ -386,13 +386,13 @@ This is the first attempt to prove Urysohns Lemma with the usage of struct.
% U' = ( A_{0}, A'_{1}, A_{1}, A'_{2}, A_{2}, ... A_{n-1}, A'_{n}, A_{n})
% Let $m = \max{\indexxset[U]}$.
- % For all $n \in (\indexxset[U] \setminus \{m\})$ we have there exist $C \subseteq X$
+ % For all $n \in (\indexxset[U] \setminus \{m\})$ we have there exist $C \subseteq X$
% such that $\closure{\indexx[U](n)}{X} \subseteq \interior{C}{X} \subseteq \closure{C}{X} \subseteq \interior{\indexx[U](n+1)}{X}$.
-
-
+
+
%\begin{definition}\label{urysohnone_refinmant}
- % $C'$ is a refinmant of $C$ iff for all $x \in C$ we have $x \in C'$ and
- % for all $y \in C$ such that $y \subset x$
+ % $C'$ is a refinmant of $C$ iff for all $x \in C$ we have $x \in C'$ and
+ % for all $y \in C$ such that $y \subset x$
% we have there exist $c \in C'$ such that $y \subset c \subset x$
% and for all $g \in C'$ such that $g \neq c$ we have not $y \subset g \subset x$.
%\end{definition}
@@ -408,8 +408,8 @@ This is the first attempt to prove Urysohns Lemma with the usage of struct.
Let $X$ be a urysohn space.
Suppose $U$ is a urysohnchain in $X$ and $U$ has cardinality $k$.
Suppose $k \neq \zero$.
- Then there exist $f$ such that $f \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}}$
- and for all $n \in \indexxset[U]$ we have for all $x \in \indexx[U](n)$
+ Then there exist $f$ such that $f \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}}$
+ and for all $n \in \indexxset[U]$ we have for all $x \in \indexx[U](n)$
we have $f(x) = \rfrac{n}{k}$.
\end{proposition}
\begin{proof}
@@ -425,12 +425,12 @@ This is the first attempt to prove Urysohns Lemma with the usage of struct.
\begin{abbreviation}\label{urysohnone_sequence_of_functions}
- $f$ is a sequence of functions iff $f$ is a sequence
+ $f$ is a sequence of functions iff $f$ is a sequence
and for all $g \in \carrier[f]$ we have $g$ is a function.
\end{abbreviation}
\begin{abbreviation}\label{urysohnone_sequence_in_reals}
- $s$ is a sequence of real numbers iff $s$ is a sequence
+ $s$ is a sequence of real numbers iff $s$ is a sequence
and for all $r \in \carrier[s]$ we have $r \in \reals$.
\end{abbreviation}
@@ -445,27 +445,27 @@ This is the first attempt to prove Urysohns Lemma with the usage of struct.
\end{axiom}
\begin{abbreviation}\label{urysohnone_converge}
- $s$ converges iff $s$ is a sequence of real numbers
+ $s$ converges iff $s$ is a sequence of real numbers
and $\indexxset[s]$ is infinite
and for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have
there exist $N \in \indexxset[s]$ such that
- for all $m \in \indexxset[s]$ such that $m > N$
+ for all $m \in \indexxset[s]$ such that $m > N$
we have $\abs{\indexx[s](N) - \indexx[s](m)} < \epsilon$.
\end{abbreviation}
\begin{definition}\label{urysohnone_limit_of_sequence}
$x$ is the limit of $s$ iff $s$ is a sequence of real numbers
- and $x \in \reals$ and
+ and $x \in \reals$ and
for all $\epsilon \in \reals$ such that $\epsilon > \zero$
- we have there exist $n \in \indexxset[s]$ such that
- for all $m \in \indexxset[s]$ such that $m > n$
+ we have there exist $n \in \indexxset[s]$ such that
+ for all $m \in \indexxset[s]$ such that $m > n$
we have $\abs{x - \indexx[s](n)} < \epsilon$.
\end{definition}
\begin{proposition}\label{urysohnone_existence_of_limit}
Let $s$ be a sequence of real numbers.
- Then $s$ converges iff there exist $x \in \reals$
+ Then $s$ converges iff there exist $x \in \reals$
such that $x$ is the limit of $s$.
\end{proposition}
\begin{proof}
@@ -515,7 +515,7 @@ This is the first attempt to prove Urysohns Lemma with the usage of struct.
\begin{lemma}\label{urysohnone_frection3}
Suppose $a \in \reals$.
Suppose $a < \zero$.
- Then there exist $N \in \naturals$ such that for all $N' \in \naturals$ such that $N' > N$ we have $\zero < \rfrac{1}{\pot(N')} < a$.
+ Then there exist $N \in \naturals$ such that for all $N' \in \naturals$ such that $N' > N$ we have $\zero < \rfrac{1}{\pot(N')} < a$.
\end{lemma}
\begin{proof}
Omitted.
@@ -560,7 +560,7 @@ This is the first attempt to prove Urysohns Lemma with the usage of struct.
-
+
%\begin{definition}\label{urysohnone_sequencetwo}
% $Z$ is a sequencetwo iff $Z = (N,f,B)$ and $N \subseteq \naturals$ and $f$ is a bijection from $N$ to $B$.
%\end{definition}
@@ -591,20 +591,20 @@ This is the first attempt to prove Urysohns Lemma with the usage of struct.
Suppose $A,B \in \closeds{X}$.
Suppose $A \inter B$ is empty.
Suppose $\carrier[X]$ is inhabited.
- There exist $f$ such that $f \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}}$
+ There exist $f$ such that $f \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}}$
and $f(A) = \zero$ and $f(B)= 1$ and $f$ is continuous.
\end{theorem}
\begin{proof}
-
- There exist $\eta$ such that $\carrier[\eta] = \{A, (\carrier[X] \setminus B)\}$
- and $\indexxset[\eta] = \{\zero, 1\}$
+
+ There exist $\eta$ such that $\carrier[\eta] = \{A, (\carrier[X] \setminus B)\}$
+ and $\indexxset[\eta] = \{\zero, 1\}$
and $\indexx[\eta](\zero) = A$
and $\indexx[\eta](1) = (\carrier[X] \setminus B)$ by \cref{urysohnone_urysohnchain_induction_begin}.
-
- We show that there exist $\zeta$ such that $\zeta$ is a sequence
+
+ We show that there exist $\zeta$ such that $\zeta$ is a sequence
and $\indexxset[\zeta] = \naturals$
and $\eta \in \carrier[\zeta]$ and $\indexx[\zeta](\eta) = \zero$
- and for all $n \in \indexxset[\zeta]$ we have $n+1 \in \indexxset[\zeta]$
+ and for all $n \in \indexxset[\zeta]$ we have $n+1 \in \indexxset[\zeta]$
and $\indexx[\zeta](n+1)$ is a refinmant of $\indexx[\zeta](n)$.
\begin{subproof}
%Let $\alpha = \{x \in C \mid \exists y \in \alpha. x \refine y \lor x = \eta\}$.
@@ -622,8 +622,8 @@ This is the first attempt to prove Urysohns Lemma with the usage of struct.
Let $\alpha = \carrier[X]$.
%Define $f : \alpha \to \naturals$ such that $f(x) =$
%\begin{cases}
- % & 1 & \text{if} x \in A \lor x \in B
- % & k & \text{if} \exists k \in \naturals
+ % & 1 & \text{if} x \in A \lor x \in B
+ % & k & \text{if} \exists k \in \naturals
%\end{cases}
%
%We show that there exist $k \in \funs{\carrier[X]}{\reals}$ such that
@@ -646,9 +646,9 @@ This is the first attempt to prove Urysohns Lemma with the usage of struct.
Omitted.
\end{subproof}
-
-% We show that for all $m \in \indexxset[\zeta]$ we have there exist $f$ such that $f \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}}$
-% and for all $n \in \indexxset[\indexx[\zeta](m)]$ we have for all $x \in \indexx[\indexx[\zeta](m)](n)$ such that $x \notin \indexx[\indexx[\zeta](m)](n-1)$
+
+% We show that for all $m \in \indexxset[\zeta]$ we have there exist $f$ such that $f \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}}$
+% and for all $n \in \indexxset[\indexx[\zeta](m)]$ we have for all $x \in \indexx[\indexx[\zeta](m)](n)$ such that $x \notin \indexx[\indexx[\zeta](m)](n-1)$
% we have $f(x) = \rfrac{n}{\pot(m)}$.
% \begin{subproof}
% Fix $m \in \indexxset[\zeta]$.
@@ -656,61 +656,61 @@ This is the first attempt to prove Urysohns Lemma with the usage of struct.
%
% %Define $o : \alpha \to \intervalclosed{\zero}{1}$ such that $o(x) =$
% %\begin{cases}
-% % & 0 & \text{if} x \in A
-% % & 1 & \text{if} x \in B
+% % & 0 & \text{if} x \in A
+% % & 1 & \text{if} x \in B
% % & \rfrac{n}{m} & \text{if} \exists n \in \naturals. x \in \indexx[\indexx[\zeta](m)](n) \land x \notin \indexx[\indexx[\zeta](m)](n-1)
% %\end{cases}
%%
% Omitted.
% \end{subproof}
%
-%
+%
%
% %The sequenc of the functions
% Let $\gamma = \{
-% (n,f) \mid
-% n \in \naturals \mid
-%
-% \forall n' \in \indexxset[\indexx[\zeta](n)].
-% \forall x \in \carrier[X].
-%
+% (n,f) \mid
+% n \in \naturals \mid
+%
+% \forall n' \in \indexxset[\indexx[\zeta](n)].
+% \forall x \in \carrier[X].
+%
%
% f \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}} \land
%
%
% % (n,f) \in \gamma <=> \phi(n,f)
-% % with \phi (n,f) :=
-% % (x \in (A_k) \ (A_k-1)) ==> f(x) = ( k / 2^n )
-% % \/ (x \notin A_k for all k \in {1,..,n} ==> f(x) = 1
-%
-% ( (n' = \zero)
-% \land (x \in \indexx[\indexx[\zeta](n)](n'))
-% \land (f(x)= \zero) )
-%
+% % with \phi (n,f) :=
+% % (x \in (A_k) \ (A_k-1)) ==> f(x) = ( k / 2^n )
+% % \/ (x \notin A_k for all k \in {1,..,n} ==> f(x) = 1
+%
+% ( (n' = \zero)
+% \land (x \in \indexx[\indexx[\zeta](n)](n'))
+% \land (f(x)= \zero) )
+%
% \lor
-%
-% ( (n' > \zero)
+%
+% ( (n' > \zero)
% \land (x \in \indexx[\indexx[\zeta](n)](n'))
% \land (x \notin \indexx[\indexx[\zeta](n)](n'-1))
% \land (f(x) = \rfrac{n'}{\pot(n)}) )
-%
+%
% \lor
%
% ( (x \notin \indexx[\indexx[\zeta](n)](n'))
% \land (f(x) = 1) )
-%
+%
% \}$.
-%
+%
% Let $\gamma(n) = \apply{\gamma}{n}$ for $n \in \naturals$.
%
-% We show that for all $n \in \naturals$ we have $\gamma(n)$
+% We show that for all $n \in \naturals$ we have $\gamma(n)$
% is a function from $\carrier[X]$ to $\reals$.
% \begin{subproof}
% Omitted.
% \end{subproof}
%
-%
-% We show that for all $n \in \naturals$ we have $\gamma(n)$
+%
+% We show that for all $n \in \naturals$ we have $\gamma(n)$
% is a function from $\carrier[X]$ to $\intervalclosed{\zero}{1}$.
% \begin{subproof}
% Omitted.
@@ -726,7 +726,7 @@ This is the first attempt to prove Urysohns Lemma with the usage of struct.
% Omitted.
% \end{subproof}
%
-% We show that for all $n \in \naturals$ for all $x \in \carrier[X]$ we have $\apply{\gamma(n)}{x} \in \intervalclosed{\zero}{1}$.
+% We show that for all $n \in \naturals$ for all $x \in \carrier[X]$ we have $\apply{\gamma(n)}{x} \in \intervalclosed{\zero}{1}$.
% \begin{subproof}
% Fix $n \in \naturals$.
% Fix $x \in \carrier[X]$.
@@ -735,29 +735,29 @@ This is the first attempt to prove Urysohns Lemma with the usage of struct.
%
%
%
-% We show that
-% if $h$ is a function from $\naturals$ to $\reals$ and for all $n \in \naturals$ we have $h(n) \leq h(n+1)$ and there exist $B \in \reals$ such that $h(n) < B$
+% We show that
+% if $h$ is a function from $\naturals$ to $\reals$ and for all $n \in \naturals$ we have $h(n) \leq h(n+1)$ and there exist $B \in \reals$ such that $h(n) < B$
% then there exist $k \in \reals$ such that for all $m \in \naturals$ we have $h(m) \leq k$ and for all $k' \in \reals$ such that $k' < k$ we have there exist $M \in \naturals$ such that $k' < h(M)$.
% \begin{subproof}
% Omitted.
-% \end{subproof}
+% \end{subproof}
%
%
%
% We show that there exist $g$ such that for all $x \in \carrier[X]$ we have there exist $k \in \reals$ such that $g(x)= k$ and for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have there exist $N \in \naturals$ such that for all $N' \in \naturals$ such that $N' > N$ we have $\abs{\apply{\gamma(N')}{x} - k} < \epsilon$.
-% \begin{subproof}
+% \begin{subproof}
% We show that for all $x \in \carrier[X]$ we have there exist $k \in \reals$ such that for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have there exist $N \in \naturals$ such that for all $N' \in \naturals$ such that $N' > N$ we have $\abs{\apply{\gamma(N')}{x} - k} < \epsilon$.
% \begin{subproof}
% Fix $x \in \carrier[X]$.
-%
+%
% Omitted.
-%
+%
% % Contradiction by \cref{two_in_naturals,function_apply_default,reals_axiom_zero_in_reals,dom_emptyset,notin_emptyset,funs_type_apply,neg,minus,abs_behavior1}.
% %Follows by \cref{two_in_naturals,function_apply_default,reals_axiom_zero_in_reals,dom_emptyset,notin_emptyset,funs_type_apply,neg,minus,abs_behavior1}.
% \end{subproof}
% Omitted.
% \end{subproof}
-%
+%
%
% Let $G(x) = g(x)$ for $x \in \carrier[X]$.
% We have $\dom{G} = \carrier[X]$.
@@ -772,7 +772,7 @@ This is the first attempt to prove Urysohns Lemma with the usage of struct.
% %We show that for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have there exist $N \in \naturals$ such that for all $N' \in \naturals$ such that $N' > N$ we have $\abs{\apply{\gamma(N')}{x} - g(x)} < \epsilon$ and $g(x)= k$.
% %\begin{subproof}
% % Fix $\epsilon \in \reals$.
-% %
+% %
%%
% %\end{subproof}
% %Follows by \cref{apply,plus_one_order,ordinal_iff_suc_ordinal,natural_number_is_ordinal,subseteq,naturals_subseteq_reals,naturals_is_equal_to_two_times_naturals,reals_one_bigger_zero,one_in_reals,ordinal_prec_trichotomy,omega_is_an_ordinal,suc_intro_self,two_in_naturals,in_asymmetric,suc}.
@@ -784,13 +784,13 @@ This is the first attempt to prove Urysohns Lemma with the usage of struct.
% %Fix $x \in \dom{G}$.
% %Then $x \in \carrier[X]$.
% %\begin{byCase}
-% % \caseOf{$x \in A$.}
+% % \caseOf{$x \in A$.}
% % For all $n \in \naturals$ we have $\apply{\gamma(n)}{x} = \zero$.
%%
%%
-% % \caseOf{$x \notin A$.}
+% % \caseOf{$x \notin A$.}
% % \begin{byCase}
-% % \caseOf{$x \in B$.}
+% % \caseOf{$x \in B$.}
% % For all $n \in \naturals$ we have $\apply{\gamma(n)}{x} = 1$.
%%
% % \caseOf{$x \notin B$.}
@@ -802,7 +802,7 @@ This is the first attempt to prove Urysohns Lemma with the usage of struct.
%
%
% We show that $G \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}}$.
-% \begin{subproof}
+% \begin{subproof}
% %It suffices to show that $\ran{G} \subseteq \intervalclosed{\zero}{1}$ by \cref{fun_ran_iff,funs_intro,funs_weaken_codom}.
% %It suffices to show that for all $x \in \dom{G}$ we have $G(x) \in \intervalclosed{\zero}{1}$.
% %Fix $x \in \dom{G}$.
@@ -832,48 +832,48 @@ This is the first attempt to prove Urysohns Lemma with the usage of struct.
% %Suppose $\eta$ is a urysohnchain in $X$.
% %Suppose $\carrier[\eta] =\{A, (X \setminus B)\}$
% %and $\indexxset[\eta] = \{\zero, 1\}$
-% %and $\indexx[\eta](\zero) = A$
+% %and $\indexx[\eta](\zero) = A$
% %and $\indexx[\eta](1) = (X \setminus B)$.
%
%
% %Then $\eta$ is a urysohnchain in $X$.
%
% % Take $P$ such that $P$ is a infinite sequence and $\indexxset[P] = \naturals$ and for all $i \in \indexxset[P]$ we have $\indexx[P](i) = \pow{X}$.
-% %
-% % We show that there exist $\zeta$ such that $\zeta$ is a infinite sequence
-% % and for all $i \in \indexxset[\zeta]$ we have
+% %
+% % We show that there exist $\zeta$ such that $\zeta$ is a infinite sequence
+% % and for all $i \in \indexxset[\zeta]$ we have
% % $\indexx[\zeta](i)$ is a urysohnchain in $X$ of cardinality $i$
% % and $A \subseteq \indexx[\zeta](i)$
% % and $\indexx[\zeta](i) \subseteq (X \setminus B)$
-% % and for all $j \in \indexxset[\zeta]$ such that
+% % and for all $j \in \indexxset[\zeta]$ such that
% % $j < i$ we have for all $x \in \indexx[\zeta](j)$ we have $x \in \indexx[\zeta](i)$.
% % \begin{subproof}
% % Omitted.
% % \end{subproof}
-% %
-% %
-% %
- %
- %
- %
- %
- %
+% %
+% %
+% %
+ %
+ %
+ %
+ %
+ %
% We show that there exist $g \in \funs{X}{\intervalclosed{\zero}{1}}$ such that $g(A)=1$ and $g(X\setminus A) = \zero$.
% \begin{subproof}
% Omitted.
% \end{subproof}
% $g$ is a staircase function and $\chain[g] = C$.
% $g$ is a legal staircase function.
- %
- %
- % We show that there exist $f$ such that $f \in \funs{X}{\intervalclosed{\zero}{1}}$
+ %
+ %
+ % We show that there exist $f$ such that $f \in \funs{X}{\intervalclosed{\zero}{1}}$
% and $f(A) = 1$ and $f(B)= 0$ and $f$ is continuous.
% \begin{subproof}
% Omitted.
% \end{subproof}
- % We show that for all $n \in \nautrals$ we have $C_{n}$ a legal chain of subsets of $X$.
+ % We show that for all $n \in \nautrals$ we have $C_{n}$ a legal chain of subsets of $X$.
% \begin{subproof}
% Omitted.
% \end{subproof}
@@ -891,28 +891,28 @@ This is the first attempt to prove Urysohns Lemma with the usage of struct.
% Formalization idea of enumarted sequences:
- % - Define a enumarted sequnecs as a set A with a bijection between A and E \in \pow{\naturals}
+ % - Define a enumarted sequnecs as a set A with a bijection between A and E \in \pow{\naturals}
% - This should give all finite and infinte enumarable sequences
% - Introduce a notion for the indexing of these enumarable sequences.
% - Then we can define the limit of a enumarted sequence of functions.
% ---------------------------------------------------------
- %
+ %
% Here we need a limit definition for sequences of functions
% We show that there exist $F \in \funs{X}{\intervalclosed{0}{1}}$ such that $F = \limit{set of the staircase functions}$
% \begin{subproof}
% Omitted.
% \end{subproof}
- %
+ %
% We show that $F(A) = 1$.
% \begin{subproof}
% Omitted.
% \end{subproof}
- %
+ %
% We show that $F(B) = 0$.
% \begin{subproof}
% Omitted.
- % \end{subproof}
- %
+ % \end{subproof}
+ %
% We show that $F$ is continuous.
% \begin{subproof}
% Omitted.
@@ -920,5 +920,5 @@ This is the first attempt to prove Urysohns Lemma with the usage of struct.
\end{proof}
%
%\begin{theorem}\label{urysohnone_safe}
-% Contradiction.
+% Contradiction.
%\end{theorem}