summaryrefslogtreecommitdiff
path: root/library
diff options
context:
space:
mode:
Diffstat (limited to 'library')
-rw-r--r--library/numbers.tex18
-rw-r--r--library/topology/metric-space.tex41
2 files changed, 38 insertions, 21 deletions
diff --git a/library/numbers.tex b/library/numbers.tex
index df47d81..a0e2211 100644
--- a/library/numbers.tex
+++ b/library/numbers.tex
@@ -10,7 +10,7 @@
%\inv{} für inverse benutzen. Per Signatur einfüheren und dann axiomatisch absicher
%\cdot für multiklikation verwenden.
%< für die relation benutzen.
-
+% sup und inf einfügen
\begin{signature}
$\reals$ is a set.
@@ -92,7 +92,7 @@
\begin{axiom}\label{reals_axiom_mul_invers}
- For all $x \in \reals$ there exist $y \in \reals$ such that $x \neq \zero$ and $x \times y = 1$.
+ For all $x \in \reals$ such that $x \neq \zero$ there exist $y \in \reals$ such that $x \times y = 1$.
\end{axiom}
\begin{axiom}\label{reals_axiom_disstro1}
@@ -107,7 +107,10 @@
For all $x,y,z \in \reals$ if $x + y = x + z$ then $y = z$.
\end{proposition}
-
+\begin{axiom}\label{reals_axiom_dedekind_complete}
+ For all $X,Y,x,y$ such that $X,Y \subseteq \reals$ and $x \in X$ and $y \in Y$ and $x < y$ we have there exist $z \in \reals$
+ such that $x < z < y$.
+\end{axiom}
\begin{lemma}\label{order_reals_lemma1}
@@ -129,14 +132,15 @@
then $(x \times z) < (x \times y)$.
\end{lemma}
-\begin{lemma}\label{a}
+\begin{lemma}\label{o4rder_reals_lemma}
For all $x,y \in \reals$ if $x > y$ then $x \geq y$.
\end{lemma}
-\begin{lemma}\label{aa}
+\begin{lemma}\label{order_reals_lemma5}
For all $x,y \in \reals$ if $x < y$ then $x \leq y$.
\end{lemma}
-\begin{lemma}\label{aaa}
+\begin{lemma}\label{order_reals_lemma6}
For all $x,y \in \reals$ if $x \leq y \leq x$ then $x=y$.
-\end{lemma} \ No newline at end of file
+\end{lemma}
+
diff --git a/library/topology/metric-space.tex b/library/topology/metric-space.tex
index 7021a60..2a31d95 100644
--- a/library/topology/metric-space.tex
+++ b/library/topology/metric-space.tex
@@ -4,23 +4,22 @@
\section{Metric Spaces}
-\begin{abbreviation}\label{metric}
- $f$ is a metric iff $f$ is a function to $\reals$.
-\end{abbreviation}
-
-\begin{axiom}\label{metric_axioms}
- $f$ is a metric iff $\dom{f} = A \times A$ and
- for all $x,y,z \in A$ we have
+\begin{definition}\label{metric}
+ $f$ is a metric on $M$ iff $f$ is a function from $M \times M$ to $\reals$ and
+ for all $x,y,z \in M$ we have
$f(x,x) = \zero$ and
$f(x,y) = f(y,x)$ and
$f(x,y) \leq f(x,z) + f(z,y)$ and
if $x \neq y$ then $\zero < f(x,y)$.
-\end{axiom}
+\end{definition}
\begin{definition}\label{open_ball}
- $\openball{r}{x}{f} = \{z \in M \mid \text{ $f$ is a metric and $\dom{f} = M \times M$ and $f(x,z)<r$ } \}$.
+ $\openball{r}{x}{f} = \{z \in M \mid \text{ $f$ is a metric on $M$ and $f(x,z) < r$ } \}$.
\end{definition}
+%TODO: \metric_opens{d} = {hier die construction für topology}
+%TODO: Die induzierte topology definieren und dann in struct verwenden.
+
\begin{struct}\label{metric_space}
A metric space $M$ is a onesorted structure equipped with
@@ -29,8 +28,7 @@
\end{enumerate}
such that
\begin{enumerate}
- \item \label{metric_space_d} $\metric[M]$ is a function from $M \times M$ to $\reals$.
- \item \label{metric_space_metric} $\metric[M]$ is a metric.
+ \item \label{metric_space_metric} $\metric[M]$ is a metric on $M$.
\item \label{metric_space_topology} $M$ is a topological space.
\item \label{metric_space_opens} for all $x \in M$ for all $r \in \reals$ $\openball{r}{x}{\metric[M]} \in \opens[M]$.
\end{enumerate}
@@ -45,12 +43,27 @@
\end{abbreviation}
\begin{lemma}\label{union_of_open_balls_is_open}
- Let $M$ be a metric space, let $U$ be an open ball in $M$, and let
- $V$ be an open ball in $M$.
- Then $U \union V$ is open in $M$.
+ Let $M$ be a metric space.
+ For all $U,V \subseteq M$ if $U$ is an open ball in $M$ and $V$ is an open ball in $M$ then $U \union V$ is open in $M$.
\end{lemma}
+%\begin{definition}\label{lenght_of_interval} %TODO: take minus if its implemented
+% $\lenghtinterval{x}{y} = r$
+%\end{definition}
+
+
+
+
+
+\begin{lemma}\label{metric_implies_topology}
+ Let $M$ be a set, and let $f$ be a metric on $M$.
+ Then $M$ is a metric space.
+\end{lemma}
+
+
+
+
%\begin{struct}\label{metric_space}
% A metric space $M$ is a onesorted structure equipped with