diff options
Diffstat (limited to 'library')
| -rw-r--r-- | library/numbers.tex | 3 | ||||
| -rw-r--r-- | library/topology/real-topological-space.tex | 27 |
2 files changed, 18 insertions, 12 deletions
diff --git a/library/numbers.tex b/library/numbers.tex index 406553e..ac0a683 100644 --- a/library/numbers.tex +++ b/library/numbers.tex @@ -613,6 +613,9 @@ Laws of the order on the reals \subsection{Order on the reals} +\begin{axiom}\label{reals_order_is_transitive} + For all $x,y,z \in \reals$ such that $x < y$ and $y < z$ we have $x < z$. +\end{axiom} \begin{lemma}\label{plus_one_order} diff --git a/library/topology/real-topological-space.tex b/library/topology/real-topological-space.tex index e5e17ef..d9790aa 100644 --- a/library/topology/real-topological-space.tex +++ b/library/topology/real-topological-space.tex @@ -70,7 +70,7 @@ Then $\epsBall{x}{\epsilon}$ is inhabited. \end{lemma} \begin{proof} - $x < x + \epsilon$. + $x < x + \epsilon$ by \cref{reals_order_behavior_with_addition,realsplus,reals_axiom_zero_in_reals,reals_axiom_kommu,reals_axiom_zero}. $x - \epsilon < x$. $x \in \epsBall{x}{\epsilon}$. \end{proof} @@ -104,12 +104,8 @@ Omitted. \end{proof} -\begin{lemma}\label{reals_order_is_transitive} - For all $x,y,z \in \reals$ such that $x < y$ and $y < z$ we have $x < z$. -\end{lemma} -\begin{proof} - Omitted. -\end{proof} + + \begin{lemma}\label{reals_order_plus_minus} Suppose $a,b \in \reals$. @@ -207,12 +203,16 @@ For all $x,\delta$ such that $x \in \reals \land \delta \in \realsplus$ we have Then there exists $a,b \in \reals$ such that $a < b$ and $\intervalopen{a}{b} = \epsBall{x}{\epsilon}$. \end{lemma} +\begin{lemma}\label{one_in_realsplus} + $1 \in \realsplus$. +\end{lemma} + \begin{lemma}\label{reals_existence_addition_reverse} For all $\delta \in \reals$ there exists $\epsilon \in \reals$ such that $\epsilon + \epsilon = \delta$. \end{lemma} \begin{proof} Fix $\delta \in \reals$. - Follows by \cref{reals_disstro2,reals_axiom_disstro1,reals_rmul,suc_eq_plus_one,reals_axiom_mul_invers,suc,suc_neq_emptyset,realsplus_in_reals_plus,naturals_addition_axiom_2,naturals_1_kommu,reals_axiom_zero,naturals_inductive_set,one_is_suc_zero,realsplus,reals_one_bigger_zero,one_in_reals,reals_axiom_one,minus_in_reals}. + Follows by \cref{one_in_realsplus,reals_disstro2,reals_axiom_disstro1,reals_rmul,suc_eq_plus_one,reals_axiom_mul_invers,suc,suc_neq_emptyset,realsplus_in_reals_plus,naturals_addition_axiom_2,naturals_1_kommu,reals_axiom_zero,naturals_inductive_set,one_is_suc_zero,realsplus,reals_one_bigger_zero,one_in_reals,reals_axiom_one,minus_in_reals}. \end{proof} \begin{lemma}\label{reals_addition_minus_behavior1} @@ -260,7 +260,7 @@ For all $x,\delta$ such that $x \in \reals \land \delta \in \realsplus$ we have \end{subproof} We show that $\epsBall{x}{\epsilon} \subseteq \intervalopen{a}{b}$. \begin{subproof} - It suffices to show that for all $y \in \epsBall{x}{\epsilon}$ we have $y \in \intervalopen{a}{b}$. + It suffices to show that for all $y \in \epsBall{x}{\epsilon}$ we have $y \in \intervalopen{a}{b}$ by \cref{subseteq}. Fix $y \in \epsBall{x}{\epsilon}$. \end{subproof} @@ -270,7 +270,8 @@ For all $x,\delta$ such that $x \in \reals \land \delta \in \realsplus$ we have Suppose $a,b,x,y \in \reals$. Suppose $a < b$. Suppose $x < y$. - If $a \leq x < y \leq b$ then $\intervalopen{a}{b} \inter \intervalopen{x}{y} = \intervalopen{x}{y}$. + Suppose $a \leq x < y \leq b$. + Then $\intervalopen{a}{b} \inter \intervalopen{x}{y} = \intervalopen{x}{y}$. \end{lemma} \begin{proof} Omitted. @@ -280,7 +281,8 @@ For all $x,\delta$ such that $x \in \reals \land \delta \in \realsplus$ we have Suppose $a,b,x,y \in \reals$. Suppose $a < b$. Suppose $x < y$. - If $a = x$ and $b \leq y$ then $\intervalopen{a}{b} \inter \intervalopen{x}{y} = \intervalopen{a}{b}$. + Suppose $a = x$ and $b \leq y$. + Then $\intervalopen{a}{b} \inter \intervalopen{x}{y} = \intervalopen{a}{b}$. \end{lemma} \begin{proof} Omitted. @@ -290,7 +292,8 @@ For all $x,\delta$ such that $x \in \reals \land \delta \in \realsplus$ we have Suppose $a,b,x,y \in \reals$. Suppose $a < b$. Suppose $x < y$. - If $a \leq x$ and $b = y$ then $\intervalopen{a}{b} \inter \intervalopen{x}{y} = \intervalopen{x}{y}$. + Suppose $a \leq x$ and $b = y$. + Then $\intervalopen{a}{b} \inter \intervalopen{x}{y} = \intervalopen{x}{y}$. \end{lemma} \begin{proof} Omitted. |
