summaryrefslogtreecommitdiff
path: root/library
diff options
context:
space:
mode:
Diffstat (limited to 'library')
-rw-r--r--library/numbers.tex3
-rw-r--r--library/topology/real-topological-space.tex27
2 files changed, 18 insertions, 12 deletions
diff --git a/library/numbers.tex b/library/numbers.tex
index 406553e..ac0a683 100644
--- a/library/numbers.tex
+++ b/library/numbers.tex
@@ -613,6 +613,9 @@ Laws of the order on the reals
\subsection{Order on the reals}
+\begin{axiom}\label{reals_order_is_transitive}
+ For all $x,y,z \in \reals$ such that $x < y$ and $y < z$ we have $x < z$.
+\end{axiom}
\begin{lemma}\label{plus_one_order}
diff --git a/library/topology/real-topological-space.tex b/library/topology/real-topological-space.tex
index e5e17ef..d9790aa 100644
--- a/library/topology/real-topological-space.tex
+++ b/library/topology/real-topological-space.tex
@@ -70,7 +70,7 @@
Then $\epsBall{x}{\epsilon}$ is inhabited.
\end{lemma}
\begin{proof}
- $x < x + \epsilon$.
+ $x < x + \epsilon$ by \cref{reals_order_behavior_with_addition,realsplus,reals_axiom_zero_in_reals,reals_axiom_kommu,reals_axiom_zero}.
$x - \epsilon < x$.
$x \in \epsBall{x}{\epsilon}$.
\end{proof}
@@ -104,12 +104,8 @@
Omitted.
\end{proof}
-\begin{lemma}\label{reals_order_is_transitive}
- For all $x,y,z \in \reals$ such that $x < y$ and $y < z$ we have $x < z$.
-\end{lemma}
-\begin{proof}
- Omitted.
-\end{proof}
+
+
\begin{lemma}\label{reals_order_plus_minus}
Suppose $a,b \in \reals$.
@@ -207,12 +203,16 @@ For all $x,\delta$ such that $x \in \reals \land \delta \in \realsplus$ we have
Then there exists $a,b \in \reals$ such that $a < b$ and $\intervalopen{a}{b} = \epsBall{x}{\epsilon}$.
\end{lemma}
+\begin{lemma}\label{one_in_realsplus}
+ $1 \in \realsplus$.
+\end{lemma}
+
\begin{lemma}\label{reals_existence_addition_reverse}
For all $\delta \in \reals$ there exists $\epsilon \in \reals$ such that $\epsilon + \epsilon = \delta$.
\end{lemma}
\begin{proof}
Fix $\delta \in \reals$.
- Follows by \cref{reals_disstro2,reals_axiom_disstro1,reals_rmul,suc_eq_plus_one,reals_axiom_mul_invers,suc,suc_neq_emptyset,realsplus_in_reals_plus,naturals_addition_axiom_2,naturals_1_kommu,reals_axiom_zero,naturals_inductive_set,one_is_suc_zero,realsplus,reals_one_bigger_zero,one_in_reals,reals_axiom_one,minus_in_reals}.
+ Follows by \cref{one_in_realsplus,reals_disstro2,reals_axiom_disstro1,reals_rmul,suc_eq_plus_one,reals_axiom_mul_invers,suc,suc_neq_emptyset,realsplus_in_reals_plus,naturals_addition_axiom_2,naturals_1_kommu,reals_axiom_zero,naturals_inductive_set,one_is_suc_zero,realsplus,reals_one_bigger_zero,one_in_reals,reals_axiom_one,minus_in_reals}.
\end{proof}
\begin{lemma}\label{reals_addition_minus_behavior1}
@@ -260,7 +260,7 @@ For all $x,\delta$ such that $x \in \reals \land \delta \in \realsplus$ we have
\end{subproof}
We show that $\epsBall{x}{\epsilon} \subseteq \intervalopen{a}{b}$.
\begin{subproof}
- It suffices to show that for all $y \in \epsBall{x}{\epsilon}$ we have $y \in \intervalopen{a}{b}$.
+ It suffices to show that for all $y \in \epsBall{x}{\epsilon}$ we have $y \in \intervalopen{a}{b}$ by \cref{subseteq}.
Fix $y \in \epsBall{x}{\epsilon}$.
\end{subproof}
@@ -270,7 +270,8 @@ For all $x,\delta$ such that $x \in \reals \land \delta \in \realsplus$ we have
Suppose $a,b,x,y \in \reals$.
Suppose $a < b$.
Suppose $x < y$.
- If $a \leq x < y \leq b$ then $\intervalopen{a}{b} \inter \intervalopen{x}{y} = \intervalopen{x}{y}$.
+ Suppose $a \leq x < y \leq b$.
+ Then $\intervalopen{a}{b} \inter \intervalopen{x}{y} = \intervalopen{x}{y}$.
\end{lemma}
\begin{proof}
Omitted.
@@ -280,7 +281,8 @@ For all $x,\delta$ such that $x \in \reals \land \delta \in \realsplus$ we have
Suppose $a,b,x,y \in \reals$.
Suppose $a < b$.
Suppose $x < y$.
- If $a = x$ and $b \leq y$ then $\intervalopen{a}{b} \inter \intervalopen{x}{y} = \intervalopen{a}{b}$.
+ Suppose $a = x$ and $b \leq y$.
+ Then $\intervalopen{a}{b} \inter \intervalopen{x}{y} = \intervalopen{a}{b}$.
\end{lemma}
\begin{proof}
Omitted.
@@ -290,7 +292,8 @@ For all $x,\delta$ such that $x \in \reals \land \delta \in \realsplus$ we have
Suppose $a,b,x,y \in \reals$.
Suppose $a < b$.
Suppose $x < y$.
- If $a \leq x$ and $b = y$ then $\intervalopen{a}{b} \inter \intervalopen{x}{y} = \intervalopen{x}{y}$.
+ Suppose $a \leq x$ and $b = y$.
+ Then $\intervalopen{a}{b} \inter \intervalopen{x}{y} = \intervalopen{x}{y}$.
\end{lemma}
\begin{proof}
Omitted.