summaryrefslogtreecommitdiff
path: root/library
diff options
context:
space:
mode:
Diffstat (limited to 'library')
-rw-r--r--library/topology/urysohn.tex127
1 files changed, 119 insertions, 8 deletions
diff --git a/library/topology/urysohn.tex b/library/topology/urysohn.tex
index f34f12f..6662706 100644
--- a/library/topology/urysohn.tex
+++ b/library/topology/urysohn.tex
@@ -36,7 +36,12 @@ The first tept will be a formalisation of chain constructions.
-
+%%-----------------------
+% Idea:
+% A sequence could be define as a family of sets,
+% together with the existence of an indexing function.
+%
+%%-----------------------
\begin{struct}\label{sequence}
A sequence $X$ is a onesorted structure equipped with
\begin{enumerate}
@@ -148,8 +153,9 @@ The first tept will be a formalisation of chain constructions.
\end{definition}
\begin{definition}\label{refinmant}
- $C'$ is a refinmant of $C$ iff for all $x \in C$ we have $x \in C'$ and
- for all $y \in C$ such that $y \subset x$ we have there exist $c \in C'$ such that $y \subset c \subset x$
+ $C'$ is a refinmant of $C$ iff $C'$ is a urysohnchain in $X$
+ and for all $x \in C$ we have $x \in C'$
+ and for all $y \in C$ such that $y \subset x$ we have there exist $c \in C'$ such that $y \subset c \subset x$
and for all $g \in C'$ such that $g \neq c$ we have not $y \subset g \subset x$.
\end{definition}
@@ -312,9 +318,9 @@ The first tept will be a formalisation of chain constructions.
% U = ( A_{0}, A_{1}, A_{2}, ... , A_{n-1}, A_{n})
% U' = ( A_{0}, A'_{1}, A_{1}, A'_{2}, A_{2}, ... A_{n-1}, A'_{n}, A_{n})
- Let $m = \max{\indexset[U]}$.
- For all $n \in (\indexset[U] \setminus \{m\})$ we have there exist $C \subseteq X$
- such that $\closure{\index[U](n)}{X} \subseteq \interior{C}{X} \subseteq \closure{C}{X} \subseteq \interior{\index[U](n+1)}{X}$.
+ % Let $m = \max{\indexset[U]}$.
+ % For all $n \in (\indexset[U] \setminus \{m\})$ we have there exist $C \subseteq X$
+ % such that $\closure{\index[U](n)}{X} \subseteq \interior{C}{X} \subseteq \closure{C}{X} \subseteq \interior{\index[U](n+1)}{X}$.
%\begin{definition}\label{refinmant}
@@ -347,6 +353,58 @@ The first tept will be a formalisation of chain constructions.
+
+\begin{abbreviation}\label{sequence_of_functions}
+ $f$ is a sequence of functions iff $f$ is a sequence
+ and for all $g \in \carrier[f]$ we have $g$ is a function.
+\end{abbreviation}
+
+\begin{abbreviation}\label{sequence_in_reals}
+ $s$ is a sequence of real numbers iff $s$ is a sequence
+ and for all $r \in \carrier[s]$ we have $r \in \reals$.
+\end{abbreviation}
+
+
+
+\begin{axiom}\label{abs_behavior1}
+ If $x \geq \zero$ then $\abs{x} = x$.
+\end{axiom}
+
+\begin{axiom}\label{abs_behavior2}
+ If $x < \zero$ then $\abs{x} = \neg{x}$.
+\end{axiom}
+
+\begin{abbreviation}\label{converge}
+ $s$ converges iff $s$ is a sequence of real numbers
+ and $\indexset[s]$ is infinite
+ and for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have
+ there exist $N \in \indexset[s]$ such that
+ for all $m \in \indexset[s]$ such that $m > N$
+ we have $\abs{\index[s](N) - \index[s](m)} < \epsilon$.
+\end{abbreviation}
+
+
+\begin{definition}\label{limit_of_sequence}
+ $x$ is the limit of $s$ iff $s$ is a sequence of real numbers
+ and $x \in \reals$ and
+ for all $\epsilon \in \reals$ such that $\epsilon > \zero$
+ we have there exist $n \in \indexset[s]$ such that
+ for all $m \in \indexset[s]$ such that $m > n$
+ we have $\abs{x - \index[s](n)} < \epsilon$.
+\end{definition}
+
+\begin{proposition}\label{existence_of_limit}
+ Let $s$ be a sequence of real numbers.
+ Then $s$ converges iff there exist $x \in \reals$
+ such that $x$ is the limit of $s$.
+\end{proposition}
+\begin{proof}
+ Omitted.
+\end{proof}
+
+
+
+
\begin{theorem}\label{urysohn}
Let $X$ be a urysohn space.
Suppose $A,B \in \closeds{X}$.
@@ -381,12 +439,65 @@ The first tept will be a formalisation of chain constructions.
We show that for all $n \in \indexset[\zeta]$ we have $\index[\zeta](n)$ has cardinality $\pot(n)$.
\begin{subproof}
- Trivial.
+ Omitted.
\end{subproof}
-
+ For all $m \in \indexset[\zeta]$ we have $\pot(m) \neq \zero$.
+ %%------------- Maybe use Abstrect.hs line 368 "Local Function".
+
+ We show that for all $m \in \indexset[\zeta]$ we have there exist $f$ such that $f \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}}$
+ and for all $n \in \indexset[\index[\zeta](m)]$ we have for all $x \in \index[\index[\zeta](m)](n)$
+ we have $f(x) = \rfrac{n}{\pot(m)}$.
+ \begin{subproof}
+ % Fix $m \in \indexset[\zeta]$.
+ % $\index[\zeta](m)$ is a urysohnchain in $X$.
+ %
+ % Follows by \cref{existence_of_staircase_function}.
+
+ Omitted.
+ \end{subproof}
+
+
+
+ %The sequenc of the functions
+ Let $\gamma = \{
+ (n,f) \mid
+ n \in \naturals \mid
+
+ \forall n' \in \indexset[\index[\zeta](n)].
+ \forall x \in \carrier[X].
+
+
+ f \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}} \land
+
+
+ % (n,f) \in \gamma <=> \phi(n,f)
+ % with \phi (n,f) := (x \in (A_k) \ (A_k-1)) => f(x) = ( k / 2^n )
+ % \/ (x \notin A_k for all k \in {1,..,n} => f(x) = 1
+
+ ( (n' = \zero)
+ \land (x \in \index[\index[\zeta](n)](n'))
+ \land (f(x)= \zero) )
+
+ \lor
+
+ ( (n' > \zero)
+ \land (x \in \index[\index[\zeta](n)](n'))
+ \land (x \notin \index[\index[\zeta](n)](n'-1))
+ \land (f(x) = \rfrac{n'}{\pot(n)}) )
+
+ \lor
+
+ ( (x \notin \index[\index[\zeta](n)](n'))
+ \land (f(x) = 1) )
+
+ \}$.
+
+
+
+
%Suppose $\eta$ is a urysohnchain in $X$.
%Suppose $\carrier[\eta] =\{A, (X \setminus B)\}$