summaryrefslogtreecommitdiff
path: root/library
diff options
context:
space:
mode:
Diffstat (limited to 'library')
-rw-r--r--library/function.tex34
1 files changed, 30 insertions, 4 deletions
diff --git a/library/function.tex b/library/function.tex
index eb64de2..47d399f 100644
--- a/library/function.tex
+++ b/library/function.tex
@@ -118,7 +118,7 @@
\end{proof}
\begin{definition}\label{funs}
- $\funs{A}{B} = \{ f\in\rels{A}{B}\mid \text{$A = \dom{f}$ and $f$ is right-unique}\}$.
+ $\funs{A}{B} = \{ f\in\rels{A}{B}\mid \text{$A\subseteq \dom{f}$ and $f$ is right-unique}\}$.
\end{definition}
\begin{abbreviation}\label{function_from_to}
@@ -159,7 +159,7 @@
\begin{proposition}\label{funs_elim}
Let $f\in\funs{A}{B}$.
- Then $f$ is a function to $B$ such that $A = \dom{f}$.
+ Then $f$ is a function to $B$ such that $A\subseteq \dom{f}$.
\end{proposition}
\begin{proof}
$f$ is a function by \cref{funs_is_function}. % and in particular, a relation.
@@ -187,7 +187,8 @@
Then $f(a)\in B$.
\end{proposition}
\begin{proof}
- $(a,f(a)) \in f$ by \cref{funs_elim,function_apply_iff}.
+ $a\in\dom{f}$ by \cref{funs_elim,subseteq}.
+ $(a,f(a)) \in f$ by \cref{function_apply_iff}.
Thus $f(a)\in B$ by \cref{funs,rels_type_ran}.
\end{proof}
@@ -197,7 +198,8 @@
Then there exists $b\in B$ such that $(a,b)\in f$.
\end{proposition}
\begin{proof}
- $(a,f(a)) \in f$ by \cref{funs_elim,function_apply_iff}.
+ $a\in\dom{f}$ by \cref{funs_elim,subseteq}.
+ $(a,f(a)) \in f$ by \cref{function_apply_iff}.
$f(a)\in B$ by \cref{funs_type_apply}.
\end{proof}
@@ -426,6 +428,20 @@
Follows by \hyperref[setext]{extensionality}.
\end{proof}
+\begin{proposition}\label{funs_circ}
+ Let $f\in\funs{A}{B}$.
+ Let $g\in\funs{B}{C}$.
+ Then $g\circ f\in\funs{A}{C}$.
+\end{proposition}
+\begin{proof}
+ $\dom{f} = A$ by \cref{funs}.
+ $\dom{g} = B$ by \cref{funs}.
+ $g$ is composable with $f$.
+ Omitted. % TODO
+\end{proof}
+
+\subsection{Function restriction}
+
\begin{proposition}\label{restrl_of_function_is_function}
Let $f$ be a function.
Let $A$ be a set.
@@ -473,6 +489,15 @@
$\inj{A}{B} = \{f\in\funs{A}{B}\mid \text{for all $x,y\in A$ such that $f(x)=f(y)$ we have $x = y$}\}$.
\end{definition}
+\begin{proposition}\label{inj_circ}
+ Let $f\in\inj{A}{B}$.
+ Let $g\in\inj{B}{C}$.
+ Then $g\circ f\in\surj{A}{C}$.
+\end{proposition}
+\begin{proof}
+ Omitted. % TODO
+\end{proof}
+
\subsection{Surjections}
\begin{abbreviation}\label{surjection}
@@ -596,6 +621,7 @@
\end{proposition}
\begin{proof}
$g\circ f\in\surj{A}{C}$ by \cref{bijections,surjections_circ}.
+
$g\circ f$ is an injection.
\end{proof}