summaryrefslogtreecommitdiff
path: root/test/examples/geometry.tex
diff options
context:
space:
mode:
Diffstat (limited to 'test/examples/geometry.tex')
-rw-r--r--test/examples/geometry.tex132
1 files changed, 132 insertions, 0 deletions
diff --git a/test/examples/geometry.tex b/test/examples/geometry.tex
new file mode 100644
index 0000000..fd8df42
--- /dev/null
+++ b/test/examples/geometry.tex
@@ -0,0 +1,132 @@
+\begin{definition}\label{collinear}
+ $a$ is collinear with $b$ and $c$ iff $\Betw{a}{b}{c}$ or $\Betw{b}{c}{a}$ or $\Betw{c}{a}{b}$.
+\end{definition}
+
+\begin{axiom}[Reflexivity of congruence]\label{cong_refl_swap} % SST A1
+ Let $a, b$ be points.
+ Then $\Cong{a}{b}{b}{a}$.
+\end{axiom}
+
+\begin{axiom}[Pseudotransitivity of congruence]\label{cong_pseudotransitive} % SST A2
+ Let $a, b, c, d$ be points.
+ If $\Cong{c}{d}{a}{b}$ and $\Cong{c}{d}{e}{f}$ then $\Cong{a}{b}{e}{f}$.
+\end{axiom}
+
+\begin{axiom}[Identity of congruence]\label{cong_id} % SST A3
+ Let $a, b, c$ be points.
+ If $\Cong{a}{b}{c}{c}$ then $a = b$.
+\end{axiom}
+
+
+\begin{axiom}[Segment construction]\label{segment_construction} % SST A4
+ There exists a point $c$ such that $\Betw{a}{b}{c}$ and $\Cong{b}{c}{d}{e}$.
+\end{axiom}
+
+
+\begin{definition}\label{ofs}
+ Let $x,y,z,r,u,v,w,p$ be points.
+ $\OFS{x}{y}{z}{r}{u}{v}{w}{p}$ if and only if
+ $\Betw{x}{y}{z}
+ \land \Betw{u}{v}{w}$
+ and
+ $\Cong{x}{y}{u}{v}
+ \land \Cong{y}{z}{v}{w}
+ \land \Cong{x}{r}{u}{p}
+ \land \Cong{y}{r}{v}{p}$.
+\end{definition}
+
+
+\begin{axiom}[Five segment axiom]\label{five_segment} % SST A5
+ Let $a,b,c,d,a',b',c',d'$ be points.
+ If $\OFS{a}{b}{c}{d}{a'}{b'}{c'}{d'}$ and
+ $a \neq b$ then $\Cong{c}{d}{c'}{d'}$.
+\end{axiom}
+
+
+\begin{axiom}[Identity of betweenness]\label{betw_id}
+ Let $a,b$ be points.
+ If $\Betw{a}{b}{a}$ then $a = b$.
+\end{axiom}
+
+
+\begin{axiom}[Inner Pasch]\label{innerpasch} % SST A7
+ Let $x,y,z,u,v,w$ be points.
+ If $\Betw{x}{u}{z}$ and $\Betw{y}{v}{z}$ then there exists a point $w$
+ such that $\Betw{u}{w}{y}$ and $\Betw{v}{w}{x}$.
+\end{axiom}
+
+
+% \begin{axiom}[Lower dimension] % SST A8
+% %There exist points $a, b, c$ such that
+% There exists $a, b, c$ such that $a,b,c$ are points and
+% $a$ is not collinear with $b$ and $c$.
+% \end{axiom}
+
+
+\begin{axiom}[Upper dimension]\label{upperdim} % SST A9
+ Let $x,y,z,u,v$ be points.
+ If $\Cong{x}{u}{x}{v}$ and $\Cong{y}{u}{y}{v}$
+ and $\Cong{z}{u}{z}{v}$ and $u \neq v$
+ then $x$ is collinear with $y$ and $z$.
+\end{axiom}
+
+
+% \begin{axiom}[Euclid]
+% Assume $x \neq r$.
+% If $\Betw{x}{r}{v}$ and $\Betw{y}{r}{z}$
+% then there exist points $s,t$ such that
+% $\Betw{x}{y}{s}$ and $\Betw{x}{z}{t}$ and $\Betw{s}{v}{t}$.
+% \end{axiom}
+
+
+\begin{lemma}[Reflexivity of congruence]\label{cong_refl} % Satz 2.1
+ Let $a, b$ be points.
+ Then $\Cong{a}{b}{a}{b}$.
+\end{lemma}
+
+
+\begin{lemma}[Symmetry of congruence]\label{cong_sym} % Satz 2.2
+ Let $a, b, c, d$ be points.
+ Suppose $\Cong{a}{b}{c}{d}$.
+ Then $\Cong{c}{d}{a}{b}$.
+\end{lemma}
+
+
+\begin{lemma}[Transitivity of congruence]\label{cong_transitive} % Satz 2.3
+ Let $a, b, c, d, e, f$ be points.
+ If $\Cong{a}{b}{c}{d}$ and $\Cong{c}{d}{e}{f}$
+ then $\Cong{a}{b}{e}{f}$.
+\end{lemma}
+
+
+\begin{lemma}\label{cong_shuffle_left} % Satz 2.4
+ Let $a, b, c, d$ be points.
+ If $\Cong{a}{b}{c}{d}$
+ then $\Cong{b}{a}{c}{d}$.
+\end{lemma}
+
+
+\begin{lemma}\label{cong_shuffle_right} % Satz 2.5
+ Let $a, b, c, d$ be points.
+ If $\Cong{a}{b}{c}{d}$
+ then $\Cong{b}{a}{d}{c}$.
+\end{lemma}
+
+
+\begin{lemma}[Zero segments are congruent]\label{cong_zero} % Satz 2.8
+ Let $a,b$ be points.
+ Then $\Cong{a}{a}{b}{b}$.
+\end{lemma}
+
+% Somewhat slow for now.
+%\begin{lemma}[Concatenation of segments]\label{segment_concat} % Satz 2.11
+% Assume $\Betw{x}{y}{z}$ and $\Betw{r}{v}{w}$.
+% Assume $\Cong{x}{y}{r}{v}$ and $\Cong{y}{z}{v}{w}$.
+% Then $\Cong{x}{z}{r}{w}$.
+%\end{lemma}
+%\begin{proof}
+% % We have
+% $\OFS{x}{y}{z}{x}{r}{v}{w}{r}$. % By previous results and assumption.
+% If $x = y$ then $r = v$. % Axiom A3 gives this implication.
+% If $x \neq y$ then $\Cong{x}{z}{r}{w}$. % Axiom A5 completes the proof.
+%\end{proof}