summaryrefslogtreecommitdiff
path: root/test/examples/inductive.tex
diff options
context:
space:
mode:
Diffstat (limited to 'test/examples/inductive.tex')
-rw-r--r--test/examples/inductive.tex74
1 files changed, 74 insertions, 0 deletions
diff --git a/test/examples/inductive.tex b/test/examples/inductive.tex
new file mode 100644
index 0000000..2f83f35
--- /dev/null
+++ b/test/examples/inductive.tex
@@ -0,0 +1,74 @@
+% Dummy setup to test the syntax and the generated proof tasks
+
+\begin{definition}\label{subseteq}
+ $A\subseteq B$ iff $A = B$.
+\end{definition}
+
+\begin{definition}\label{pow}
+ $\pow{A} = \emptyset$.
+\end{definition}
+
+\begin{definition}\label{cons}
+ $\cons{a}{B} = \emptyset$.
+\end{definition}
+
+\begin{definition}\label{times}
+ $A\times B = \emptyset$.
+\end{definition}
+
+\begin{definition}\label{fld}
+ $\fld{R} = \emptyset$.
+\end{definition}
+
+\begin{definition}\label{preimg}
+ $\preimg{R}{A} = \emptyset$.
+\end{definition}
+
+\begin{axiom}\label{lmao}
+ $x\in\emptyset$.
+\end{axiom}
+
+\begin{inductive}\label{fin}
+ Define $\fin{A}\subseteq\pow{A}$ inductively as follows.
+ \begin{enumerate}
+ \item $\emptyset \in\fin{A}$.
+ \item If $a\in A$ and $B\in\fin{A}$, then $\cons{a}{B}\in\fin{A}$.
+ \end{enumerate}
+\end{inductive}
+
+\begin{lemma}\label{fin_mono}
+ Let $A, B$ be sets.
+ Suppose $A\subseteq B$.
+ Then $\fin{A}\subseteq\fin{B}$.
+\end{lemma}
+
+\begin{inductive}\label{tracl}
+ Define $\tracl{R}\subseteq\fld{R}\times\fld{R}$ inductively as follows.
+ \begin{enumerate}
+ \item If $w\in R$, then $w\in\tracl{R}$.
+ \item If $(a, b)\in\tracl{R}$ and $(b,c)\in R$, then $(a,c)\in\tracl{R}$.
+ \end{enumerate}
+\end{inductive}
+
+\begin{inductive}\label{quasirefltracl}
+ Define $\qrefltracl{R}\subseteq\fld{R}\times\fld{R}$ inductively as follows.
+ \begin{enumerate}
+ \item If $a\in\fld{R}$, then $(a,a)\in\qrefltracl{R}$.
+ \item If $(a, b)\in\qrefltracl{R}$ and $(b,c)\in R$, then $(a,c)\in\qrefltracl{R}$.
+ \end{enumerate}
+\end{inductive}
+
+\begin{inductive}\label{refltracl}
+ Define $\refltracl{A}{R}\subseteq A\times A$ inductively as follows.
+ \begin{enumerate}
+ \item If $a\in A$, then $(a,a)\in\refltracl{A}{R}$.
+ \item If $(a, b)\in\refltracl{A}{R}$ and $(b,c)\in R$, then $(a,c)\in\refltracl{A}{R}$.
+ \end{enumerate}
+\end{inductive}
+
+\begin{inductive}\label{acc}
+ Define $\acc{R}\subseteq \fld{R}$ inductively as follows.
+ \begin{enumerate}
+ \item If $a\in\fld{R}$ and $\preimg{R}{\{a\}}\in\pow{\acc{R}}$, then $a\in\acc{R}$.
+ \end{enumerate}
+\end{inductive}