diff options
Diffstat (limited to 'test/examples/inductive.tex')
| -rw-r--r-- | test/examples/inductive.tex | 74 |
1 files changed, 74 insertions, 0 deletions
diff --git a/test/examples/inductive.tex b/test/examples/inductive.tex new file mode 100644 index 0000000..2f83f35 --- /dev/null +++ b/test/examples/inductive.tex @@ -0,0 +1,74 @@ +% Dummy setup to test the syntax and the generated proof tasks + +\begin{definition}\label{subseteq} + $A\subseteq B$ iff $A = B$. +\end{definition} + +\begin{definition}\label{pow} + $\pow{A} = \emptyset$. +\end{definition} + +\begin{definition}\label{cons} + $\cons{a}{B} = \emptyset$. +\end{definition} + +\begin{definition}\label{times} + $A\times B = \emptyset$. +\end{definition} + +\begin{definition}\label{fld} + $\fld{R} = \emptyset$. +\end{definition} + +\begin{definition}\label{preimg} + $\preimg{R}{A} = \emptyset$. +\end{definition} + +\begin{axiom}\label{lmao} + $x\in\emptyset$. +\end{axiom} + +\begin{inductive}\label{fin} + Define $\fin{A}\subseteq\pow{A}$ inductively as follows. + \begin{enumerate} + \item $\emptyset \in\fin{A}$. + \item If $a\in A$ and $B\in\fin{A}$, then $\cons{a}{B}\in\fin{A}$. + \end{enumerate} +\end{inductive} + +\begin{lemma}\label{fin_mono} + Let $A, B$ be sets. + Suppose $A\subseteq B$. + Then $\fin{A}\subseteq\fin{B}$. +\end{lemma} + +\begin{inductive}\label{tracl} + Define $\tracl{R}\subseteq\fld{R}\times\fld{R}$ inductively as follows. + \begin{enumerate} + \item If $w\in R$, then $w\in\tracl{R}$. + \item If $(a, b)\in\tracl{R}$ and $(b,c)\in R$, then $(a,c)\in\tracl{R}$. + \end{enumerate} +\end{inductive} + +\begin{inductive}\label{quasirefltracl} + Define $\qrefltracl{R}\subseteq\fld{R}\times\fld{R}$ inductively as follows. + \begin{enumerate} + \item If $a\in\fld{R}$, then $(a,a)\in\qrefltracl{R}$. + \item If $(a, b)\in\qrefltracl{R}$ and $(b,c)\in R$, then $(a,c)\in\qrefltracl{R}$. + \end{enumerate} +\end{inductive} + +\begin{inductive}\label{refltracl} + Define $\refltracl{A}{R}\subseteq A\times A$ inductively as follows. + \begin{enumerate} + \item If $a\in A$, then $(a,a)\in\refltracl{A}{R}$. + \item If $(a, b)\in\refltracl{A}{R}$ and $(b,c)\in R$, then $(a,c)\in\refltracl{A}{R}$. + \end{enumerate} +\end{inductive} + +\begin{inductive}\label{acc} + Define $\acc{R}\subseteq \fld{R}$ inductively as follows. + \begin{enumerate} + \item If $a\in\fld{R}$ and $\preimg{R}{\{a\}}\in\pow{\acc{R}}$, then $a\in\acc{R}$. + \end{enumerate} +\end{inductive} |
