blob: 06fcb50d877bd22053cb0529ebb4b2fd4d942957 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
\import{algebra/semigroup.tex}
\section{Monoid}
\begin{struct}\label{monoid}
A monoid $A$ is a semigroup equipped with
\begin{enumerate}
\item $\neutral$
\end{enumerate}
such that
\begin{enumerate}
\item\label{monoid_type} $\neutral[A]\in \carrier[A]$.
\item\label{monoid_right} for all $a\in \carrier[A]$ we have $\mul[A](a,\neutral[A]) = a$.
\item\label{monoid_left} for all $a\in \carrier[A]$ we have $\mul[A](\neutral[A], a) = a$.
\end{enumerate}
\end{struct}
\begin{corollary}\label{monoid_implies_semigroup}
Let $A$ be a monoid. Then $A$ is a semigroup.
\end{corollary}
|