1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
|
\import{algebra/magma.tex}
\section{Quasigroups}
\begin{struct}\label{quasigroup}
A quasigroup $A$ is a magma equipped with
\begin{enumerate}
\item $\ldiv$
\item $\rdiv$
\end{enumerate}
such that
\begin{enumerate}
\item for all $a, b\in A$ we have $\ldiv (a,b)\in A$.
\item for all $a, b\in A$ we have $\rdiv (a,b)\in A$.
\item for all $a,b \in A$ we have $b = \mul(a,\ldiv (a,b))$.
\item for all $a,b \in A$ we have $b = \ldiv(a,\mul (a,b))$.
\item for all $a,b \in A$ we have $b = \mul(\rdiv (b,a),a)$.
\item for all $a,b \in A$ we have $b = \rdiv(\mul (b,a),a)$.
\end{enumerate}
\end{struct}
% Cancelling an element on the left.
\begin{lemma}\label{quasigroup_cancel_left}
Let $A$ be a quasigroup.
Let $a,b,c \in A$.
Suppose $\mul(a,b) = \mul(a,c)$.
Then $b = c$.
\end{lemma}
% Cancelling an element on the right.
\begin{lemma}\label{quasigroup_cancel_right}
Let $A$ be a quasigroup.
Let $a,b,c \in A$.
Suppose $\mul(a,c) = \mul(b,c)$.
Then $a = b$.
\end{lemma}
|