summaryrefslogtreecommitdiff
path: root/library/logic/propositional.tex
blob: 716de5469aba9f6ddef664bd49b19505102653e3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
\import{set.tex}
\import{nat.tex}


\begin{datatype}
The set $\propform$ is generated as follows.
\begin{enumerate}
    \item if $n\in\naturals$, then $\propvar{n}\in\propform$
    \item $\propbot\in\propform$
    \item if $p, q\in\propform$, then $p\propto q\in\propform$
\end{enumerate}
\end{datatype}

\begin{abbreviation}
    $\propnot p = p\propto\propbot$.
\end{abbreviation}

\begin{inductive}
    \begin{enumerate}
        \item (Detachment) If $\deducible{p}$ and $\deducible{p\propto q}$, then $\deducible{q}$
        \item (Implosion) $\deducible{p\propto q\propto p}$
        \item (Chain) $\deducible{(p\propto q\propto r)\propto(p\propto q)\propto(p\propto r)}$
        \item (Negation) $\propnot\propnot p\to p$
    \end{enumerate}
\end{inductive}

\begin{lemma}
    Suppose $\deducible{q}$.
    Then $\deducible{p\propto q}$.
\end{lemma}

\begin{primrec}
    Recursively define a predicate $\propeval{-}{-}$ on $\propform$ as follows.
    % TODO continue...
\end{primrec}