blob: 716de5469aba9f6ddef664bd49b19505102653e3 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
|
\import{set.tex}
\import{nat.tex}
\begin{datatype}
The set $\propform$ is generated as follows.
\begin{enumerate}
\item if $n\in\naturals$, then $\propvar{n}\in\propform$
\item $\propbot\in\propform$
\item if $p, q\in\propform$, then $p\propto q\in\propform$
\end{enumerate}
\end{datatype}
\begin{abbreviation}
$\propnot p = p\propto\propbot$.
\end{abbreviation}
\begin{inductive}
\begin{enumerate}
\item (Detachment) If $\deducible{p}$ and $\deducible{p\propto q}$, then $\deducible{q}$
\item (Implosion) $\deducible{p\propto q\propto p}$
\item (Chain) $\deducible{(p\propto q\propto r)\propto(p\propto q)\propto(p\propto r)}$
\item (Negation) $\propnot\propnot p\to p$
\end{enumerate}
\end{inductive}
\begin{lemma}
Suppose $\deducible{q}$.
Then $\deducible{p\propto q}$.
\end{lemma}
\begin{primrec}
Recursively define a predicate $\propeval{-}{-}$ on $\propform$ as follows.
% TODO continue...
\end{primrec}
|