summaryrefslogtreecommitdiff
path: root/library/order/semilattice.tex
blob: 51af68b4a09249b7ff556f883746c137a39186f8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
\import{order/partial-order.tex}

\begin{struct}\label{meet_semilattice}
    A meet semilattice $X$ is a partial order
    equipped with
    \begin{enumerate}
        \item $\meet$
    \end{enumerate}
    such that
    \begin{enumerate}
        \item\label{meet_type} for all $x,y\in \carrier[X]$ we have
           $\meet[X](x,y)\in X$.
        \item\label{meet_lb} for all $x,y\in \carrier[X]$ we have
            $\meet[X](x,y) \mathrel{\lt[X]} x, y$.
        \item\label{meet_glb} for all $a,x,y\in \carrier[X]$ such that $a\mathrel{\lt[X]} x, y$ we have
            $a\mathrel{\lt[X]} \meet[X](x,y)$.
    \end{enumerate}
\end{struct}


\begin{proposition}\label{meet_idempotent}
    Let $X$ be a meet semilattice.
    Then $\meet(x,x) = x$.
\end{proposition}
\begin{proof}
    $\meet(x,x) \mathrel{\lt} x$.
    $x\mathrel{\lt[X]} x, x$.
    Thus $x\mathrel{\lt[X]} \meet(x,x)$.
\end{proof}

%\begin{proposition}\label{meet_comm}
%    Let $X$ be a meet semilattice.
%    Suppose $x, y\in X$.
%    Then $\meet(x,y) = \meet(y,x)$.
%\end{proposition}

%\begin{proposition}\label{meet_assoc}
%    Let $X$ be a meet semilattice.
%    Suppose $x, y, z\in X$.
%    Then $\meet(x,\meet(y,z)) = \meet(\meet(x,y),z)$.
%\end{proposition}