1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
|
\import{order/partial-order.tex}
\begin{struct}\label{meet_semilattice}
A meet semilattice $X$ is a partial order
equipped with
\begin{enumerate}
\item $\meet$
\end{enumerate}
such that
\begin{enumerate}
\item\label{meet_type} for all $x,y\in \carrier[X]$ we have
$\meet[X](x,y)\in X$.
\item\label{meet_lb} for all $x,y\in \carrier[X]$ we have
$\meet[X](x,y) \mathrel{\lt[X]} x, y$.
\item\label{meet_glb} for all $a,x,y\in \carrier[X]$ such that $a\mathrel{\lt[X]} x, y$ we have
$a\mathrel{\lt[X]} \meet[X](x,y)$.
\end{enumerate}
\end{struct}
\begin{proposition}\label{meet_idempotent}
Let $X$ be a meet semilattice.
Then $\meet(x,x) = x$.
\end{proposition}
\begin{proof}
$\meet(x,x) \mathrel{\lt} x$.
$x\mathrel{\lt[X]} x, x$.
Thus $x\mathrel{\lt[X]} \meet(x,x)$.
\end{proof}
%\begin{proposition}\label{meet_comm}
% Let $X$ be a meet semilattice.
% Suppose $x, y\in X$.
% Then $\meet(x,y) = \meet(y,x)$.
%\end{proposition}
%\begin{proposition}\label{meet_assoc}
% Let $X$ be a meet semilattice.
% Suppose $x, y, z\in X$.
% Then $\meet(x,\meet(y,z)) = \meet(\meet(x,y),z)$.
%\end{proposition}
|