blob: 8eebf08aedaf367c05a2362f6127ff3df70e5d05 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
|
\import{relation/properties.tex}
\import{relation/equivalence.tex}
\subsection{Closure operations on relations}
\begin{definition}\label{reflexive_closure}
$\reflexiveClosure{X}{R} = R\union\identity{X}$.
\end{definition}
% reflexive closure of R is the smallest reflexive relation containing R
\begin{proposition}\label{reflexive_closure_is_reflexive}
$\reflexiveClosure{X}{R}$ is reflexive on $X$.
\end{proposition}
\begin{definition}\label{reflexive_reduction}
$\reflexiveReduction{X}{R} = R\setminus\identity{X}$.
\end{definition}
\begin{definition}\label{symmetric_closure}
$\symmetricClosure{R} = R\union\converse{R}$.
\end{definition}
% LATER transitive closure
% LATER reflexive transitive closure
% LATER equivalence closure
|