summaryrefslogtreecommitdiff
path: root/library/relation/properties.tex
blob: 191b7c06cd78aba55ae00ff506ea673f02d83b69 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
\import{set.tex}
\import{relation.tex}

\subsection{Properties of relations}

\begin{definition}\label{left_quasireflexive}
    $R$ is left quasireflexive iff
    for all $x, y$ such that $x\mathrel{R} y$
    we have $x\mathrel{R}x$.
\end{definition}

\begin{definition}\label{right_quasireflexive}
    $R$ is right quasireflexive iff
    for all $x, y$ such that $x\mathrel{R} y$
    we have $y\mathrel{R}y$.
\end{definition}

\begin{definition}\label{quasireflexive}
    $R$ is quasireflexive iff
    for all $x, y$ such that $x\mathrel{R} y$
    we have $x\mathrel{R}x$ and $y\mathrel{R}y$.
\end{definition}

\begin{definition}\label{coreflexive}
    $R$ is coreflexive iff
    for all $x, y$ such that $x\mathrel{R} y$
    we have $x = y$.
\end{definition}

\begin{definition}\label{reflexive_on}
    $R$ is reflexive on $X$ iff
    for all $x\in X$
    we have $x\mathrel{R}x$.
\end{definition}

\begin{definition}\label{irreflexive}
    $R$ is irreflexive iff
    for all $x$ we have $(x,x)\notin R$.
\end{definition}


\begin{proposition}\label{quasireflexive_implies_reflexive_on_fld}
    Suppose $R$ is quasireflexive.
    Then $R$ is reflexive on $\fld{R}$.
\end{proposition}

\begin{proposition}\label{reflexive_on_fld_impliesquasireflexive}
    Suppose $R$ is reflexive on $\fld{R}$.
    Then $R$ is quasireflexive.
\end{proposition}

\begin{proposition}\label{inters_of_family_of_reflexive_relations_is_reflexive}
    Let $F$ be an inhabited family of relations.
    Suppose every element of $F$ is reflexive on $A$.
    Then $\inters{F}$ is reflexive on $A$.
\end{proposition}
\begin{proof}
    For all $a\in A$ we have for all $R\in F$ we have $a\mathrel{R} a$.
    Thus for all $a\in A$ we have $a\mathrel{(\inters{F})} a$.
\end{proof}

\begin{definition}\label{antisymmetric}
    $R$ is antisymmetric iff
    for all $x, y$ such that $x\mathrel{R}y\mathrel{R}x$
    we have $x = y$.
\end{definition}

\begin{definition}[Symmetry]\label{symmetric}
    $R$ is symmetric iff
    for all $x, y$ we have
    $x\mathrel{R} y \iff y\mathrel{R}x$.
\end{definition}

\begin{definition}\label{asymmetric}
    $R$ is asymmetric iff
    for all $x, y$ such that
    $x\mathrel{R} y$ we have $y\not\mathrel{R}x$.
\end{definition}

\begin{proposition}\label{asymmetric_implies_irreflexive}
    Suppose $R$ is asymmetric.
    Then $R$ is irreflexive.
\end{proposition}

\begin{proposition}\label{asymmetric_implies_antisymmetric}
    Suppose $R$ is asymmetric.
    Then $R$ is antisymmetric.
\end{proposition}

\begin{proposition}\label{antisymmetric_and_irreflexive_implies_asymmetric}
    Suppose $R$ is antisymmetric.
    Suppose $R$ is irreflexive.
    Then $R$ is asymmetric.
\end{proposition}

% TODO
%\begin{proposition}\label{symmetric_relation_eq_converse}
%    Let $R$ be a symmetric relation.
%    Then $\converse{R} = R$.
%\end{proposition}
%\begin{proof}
%    Follows by set extensionality.
%\end{proof}

\begin{definition}[Transitivity]\label{transitive}
    $R$ is transitive iff
    for all $x, y, z$ such that $x\mathrel{R}y\mathrel{R}z$
        we have $x\mathrel{R} z$.
\end{definition}

\begin{proposition}\label{transitive_downward_elem}
    Suppose $R$ is transitive.
    Suppose $a\in\downward{R}{b}$.
    Suppose $c\in\downward{R}{a}$.
    Then $c\in \downward{R}{b}$.
\end{proposition}
\begin{proof}
    $c\mathrel{R} a\mathrel{R}b$.
    Thus $c\mathrel{R} b$ by \hyperref[transitive]{transitivity}.
\end{proof}

\begin{proposition}\label{transitive_downward_subseteq}
    Suppose $R$ is transitive.
    Suppose $a\in\downward{R}{b}$.
    Then $\downward{R}{a}\subseteq \downward{R}{b}$.
\end{proposition}

\begin{definition}\label{dense}
    $R$ is dense iff
    for all $x, z$ such that $x\mathrel{R}z$
        there exists $y$ such that $x\mathrel{R}y\mathrel{R}z$.
\end{definition}

% Variation of connexity that does not depend on a carrier.
\begin{definition}\label{quasiconnex}
    $R$ is quasiconnex iff
    for all $x, y\in\fld{R}$ such that $x\neq y$ we have
        $x\mathrel{R}y$ or $y\mathrel{R}x$.
\end{definition}

% Also called "connected" (here reserved for topology),
% "complete" (heavily overloaded), and total" (also overloaded).
\begin{definition}\label{connex}
    $R$ is connex on $X$ iff
    for all $x, y\in X$ such that $x\neq y$ we have
        $x\mathrel{R}y$ or $y\mathrel{R}x$.
\end{definition}

\begin{definition}\label{strongly_quasiconnex}
    $R$ is strongly quasiconnex iff
    for all $x, y\in\fld{R}$ we have
        $x\mathrel{R}y$ or $y\mathrel{R}x$.
\end{definition}

\begin{definition}\label{strongly_connex}
    $R$ is strongly connex on $X$ iff
    for all $x, y\in X$ we have
        $x\mathrel{R}y$ or $y\mathrel{R}x$.
\end{definition}

%\begin{proposition}\label{strongly_quasiconnex_implies_quasiconnex_and_quasireflexive}
%    Suppose $R$ is strongly quasiconnex.
%    Then $R$ is quasiconnex and quasireflexive.
%\end{proposition}

%\begin{proposition}\label{quasiconnex_and_quasireflexive_implies_strongly_quasiconnex}
%    Suppose $R$ is quasiconnex and quasireflexive.
%    Then $R$ is strongly quasiconnex.
%\end{proposition}

\begin{proposition}\label{strongly_quasiconnex_iff_quasiconnex_and_quasireflexive}
    $R$ is strongly quasiconnex iff
    $R$ is quasiconnex and quasireflexive.
\end{proposition}
\begin{proof}
    Follows by \cref{quasiconnex,strongly_quasiconnex,quasireflexive_implies_reflexive_on_fld,reflexive_on,fld,reflexive_on_fld_impliesquasireflexive}.
\end{proof}

\begin{proposition}\label{connex_reaches_all_or_all_but_one}
    Suppose $R$ is connex on $A$.
    Let $a, b\in A\setminus\ran{R}$.
    Then $a = b$.
\end{proposition}
\begin{proof}
    Suppose not.
    $a, b\in A$.
    Then $(a, b)\in R$ or $(b,a)\in R$ by \cref{connex}.
    $(a, b)\notin R$.
    $(b, a)\notin R$.
    Thus $a = b$.
\end{proof}


\begin{definition}\label{righteuclidean}
    $R$ is right Euclidean iff
    for all $a,b,c$ such that $a\mathrel{R}b,c$ we have $b\mathrel{R}c$.
\end{definition}

\begin{definition}\label{lefteuclidean}
    $R$ is left Euclidean iff
    for all $a,b,c$ such that $a,b\mathrel{R}c$ we have $a\mathrel{R}b$.
\end{definition}